Anti-stress Potential of Ethanol Leaf Extracts of Parquetina and Common Figs in Chronic Forced Swim Stress
Main Article Content
Abstract
Medicinal plants, such as Parquetina and Fig, have been used locally for centuries to manage various illnesses, including mental health-related conditions, effectively. This study investigated the antistress effects of 250 mg/kg body weight of ethanolic leaf extract of
Parquetina (ETEPN) and Fig (ETEFC) in male Wistar rats in a seven-day forced swim stress (FSS) model. Behavioral assessments (open field test (OFT), elevated plus-maze (EPM), and forced swim test (FST)) were performed to estimate the adaptogenic/antistress effects of the extracts. Neurochemical and oxidative stress were determined in the rats’ brain homogenates. Compared with the control, FSS elicited an inhibitory effect in the OFT and EPM and a depressogenic effect in the FST. The extracts reversed all these behavioral aberrations. A decrease was detected in the GSH level, whereas the GPx and SOD activities and the MDA and nitrite levels were significantly elevated by FSS. AChE activity and dopamine, serotonin, and cortisol levels were elevated significantly (p<0.001), and levels of brain-derived neurotrophic factor were decreased significantly (p<0.0001) by FSS. The extracts were able to ameliorate the induced oxidative stress and neurochemical alterations caused by FSS. This study revealed that the two plant extracts demonstrated anti-stress potential by ameliorating the behavioral and neurochemical dysfunction associated with chronic FSS and could be used as drug adjuncts to remedy common day-to-day stress.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Nwobodo EP, Strukcinskiene B, Razbadauskas A, Grigoliene R, Agostinis-Sobrinho C, editors. Stress Management in Healthcare Organizations: The Nigerian Context. Healthcare; 2023: MDPI. DOI: https://doi.org/10.3390/healthcare11212815
2. Sujaritha J, Deepa N, Nandhini J, Vandhana V, Mahalakshmi D. Stress and Stress Management: A Review. Researchgate Net, July. 2022.
3. Golla A, Østby H, Kermen F. Chronic unpredictable stress induces anxiety-like behaviors in young zebrafish. Sci. Rep. 2020;10(1):10339. DOI: https://doi.org/10.1038/s41598-020-67182-4
4. Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, Burtscher M, Gatterer H, Millet GP. The interplay of
hypoxic and mental stress: Implications for anxiety and depressive disorders. Neurosci. Biobehav. Rev. 2022;138:104718. DOI: https://doi.org/10.1016/j.neubiorev.2022.104718
5. Tlemcani S, Lahkimi A, Hmamou A, Slighoua M, Moussaoui F, Bekkari H. In Vivo Evaluation of Analgesic, Anti-Inflammatory, Antidepressant and Cytotoxic potential of Moroccan Salvia verbenaca L. Extracts. Trop. J. Nat. Prod. Res., 2025 9(6): 2426 - 2433 https://doi.org/10.26538/tjnpr/v9i6.11 DOI: https://doi.org/10.26538/tjnpr/v9i6.11
6. Kaur G, Kulkarni S. Differential effect of a polyherbal formulation-OB-200G in male and female mice subjected to forced swim stress. Indian J. Physiol. Pharmacol. 2000;44(3):281-289.
7. Gellért L, Varga D. Locomotion activity measurement in an open field for mice. Bio-Protoc. 2016;6(13):e1857-e DOI: https://doi.org/10.21769/BioProtoc.1857
8. Vogel H, Vogel W. Elevated plus maze test. Drug discovery and evaluation, Springer-Verlag Berlin Heidelberg, New York. 1997:234. DOI: https://doi.org/10.1007/978-3-662-03333-3
9. Leo LM, Pamplona FA. Elevated plus maze test to assess anxiety-like behavior in the mouse. Bio-Protoc. 2014;4(16):e1211-e. DOI: https://doi.org/10.21769/BioProtoc.1211
10. Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. JoVE. 2015(97):e52587. DOI: https://doi.org/10.3791/52587-v
11. Akinduko AA, Salawu SO, Akinmoladun AC, Akindahunsi AA, Osemwegie OO. Assessment of the anxiolytic, antidepressant, and antioxidant potential of Parquetina nigrescens (Afzel.) Bullock in Wistar rats. J. Ethnopharmacol. 2024;322:117597. DOI: https://doi.org/10.1016/j.jep.2023.117597
12. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. 1985. J. Lab. Clin. Med.; 61:882-888
13. Haque MA, Khalequzzaman K, Islam MS, Hossain M. Survey of the prevalence of market diseases of banana. 2003. DOI: https://doi.org/10.3923/ppj.2003.169.173
14. Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 1984 Apr 1;21(2):130-132.
15. Varshney R, Kale R. Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes. Int. J. Radiat. Biol. 1990;58(5):733-743. DOI: https://doi.org/10.1080/09553009014552121
16. Guevara I, Iwanejko J, Dembińska-Kieć A, Pankiewicz J, Wanat A, Anna P, Gołąbek I, Bartuś S, Malczewska-Malec M, Szczudlik A. Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin. Chim. Acta. 1998;274(2):177-188. DOI: https://doi.org/10.1016/S0009-8981(98)00060-6
17. Guo L, Zhang Y, Li Q. Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe (III). Anal. Sci. 2009;25(12):1451-1455. DOI: https://doi.org/10.2116/analsci.25.1451
18. Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7(2):88-95. DOI: https://doi.org/10.1016/0006-2952(61)90145-9
19. Redzic E, Dz B, Zunic L. The Stress Influence on Population Health. Int J Biomed Healthc. 2024;12(1):7-24. DOI: https://doi.org/10.5455/ijbh.2024.12.7-24
20. O'Connor DB, Thayer JF, Vedhara K. Stress and health: A review of psychobiological processes. Annu. Rev. Psychol. 2021;72(1):663-688. DOI: https://doi.org/10.1146/annurev-psych-062520-122331
21. Morakinyo AO, Iranloye BO, Ogunsola OA. Glucometabolic effects of single and repeated exposure to forced-swimming stressor in Sprague-Dawley rats. Endocr. Regul. 2018;52(2):85-92. DOI: https://doi.org/10.2478/enr-2018-0010
22. Odu PO, Ujah GA, Uket JM, Odu VK, Inwang UA. Costus afer leaves extract ameliorates stress-induced alterations in hematological and lipid parameters in Wistar rats. Trop. J. Nat. Prod. Res., 2025 9(6): 2821 - 2826 https://doi.org/10.26538/tjnpr/v9i6.63 DOI: https://doi.org/10.26538/tjnpr/v9i6.63
23. Hadi H, Putriningtyas ND, Yudhistira D, Cahyati WH, Rachmawati L. The Effect of Purwoceng (Pimpella alpina Molk.) on Oxidative Stress and Immunity in Wistar Rats. Trop J Nat Prod Res. 2025; 9(6): 2481 - 2486 https://doi.org/10.26538/tjnpr/v9i6.19 DOI: https://doi.org/10.26538/tjnpr/v9i6.19
24. Chainy GB, Sahoo DK. Hormones and oxidative stress: an overview. Free Radic. Res. 2020;54(1):1-26. DOI: https://doi.org/10.1080/10715762.2019.1702656
25. Valgimigli L. Lipid peroxidation and antioxidant protection. Biomolecules. 2023;13(9):1291. DOI: https://doi.org/10.3390/biom13091291
26. Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023;11:1158198. DOI: https://doi.org/10.3389/fchem.2023.1158198
27. Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. ToxicoL. 2024;98(5):1323-1367. DOI: https://doi.org/10.1007/s00204-024-03696-4
28. Iova O-M, Marin G-E, Lazar I, Stanescu I, Dogaru G, Nicula CA, Bulboacă AE. Nitric oxide/nitric oxide synthase system in the pathogenesis of neurodegenerative disorders—an overview. Antioxidants. 2023;12(3):753. DOI: https://doi.org/10.3390/antiox12030753
29. Dehkordi HT, Bijad E, Saghaei E, Korrani MS, Amini-Khoei H. Chronic stress but not acute stress decreases the seizure threshold in PTZ-induced seizure in mice: role of inflammatory response and oxidative stress. Naunyn Schmiedebergs Arch. Pharmacol. 2023;396(5):973-982. DOI: https://doi.org/10.1007/s00210-022-02364-7
30. Kumar A, Chanana P. Role of nitric oxide in stress-induced anxiety: from pathophysiology to therapeutic target. Vitam. Horm. 2017;103:147-167. DOI: https://doi.org/10.1016/bs.vh.2016.09.004
31. Adeyemi OS, Afolabi LB, Rotimi DE, Atanu FO, Ofume DS, Ogunleye T, Oluwalana DO, Oluwole TP, Youssef A, Mostafa-Hedeab G, Batiha GE. Differential immunomodulatory potential of silver nanoparticles and effect on the kynurenine pathway in male Wistar rats. J. Nanomater. 2022;2022(1):9883142. DOI: https://doi.org/10.1155/2022/9883142
32. Ma J, Wang R, Chen Y, Wang Z, Dong Y. 5-HT attenuates chronic stress-induced cognitive impairment in mice through intestinal flora disruption. J. Neuroinflammation. 2023;20(1):23. DOI: https://doi.org/10.1186/s12974-023-02693-1
33. Sharma K, Parle M. Methanol extract of Artocarpus heterophyllus attenuates pentylenetetrazole-induced anxiety-like behaviours in mice. J. Med. Plants. 2017;5(1):181-186.
34. Philpotts R, Gillan N, Barrow M, Seidler K. Stress-induced alterations in hippocampal BDNF in the pathophysiology of major depressive disorder and the antidepressant effect of saffron. J, Affect. Disord. Rep. 2023;14:100630 DOI: https://doi.org/10.1016/j.jadr.2023.100630
35. Miao Z, Wang Y, Sun Z. The relationships between stress, mental disorders, and epigenetic regulation of BDNF. Int. J. Mol. Sci. 2020;21(4):1375. DOI: https://doi.org/10.3390/ijms21041375


