Molecular Docking Study of Standardized Lime (Citrus aurantiifolia) Peel Decoction as an Antidiabetic Herbal

Main Article Content

Yesi Desmiaty
Francis Xavier
Hanifah Agusti
Senjanursa Senjanursa
Inggit Bala
Sahroni Sahroni
Sy S. Arini
Natalie Nastasja
Esti Mumpuni
Esti Mulatsari
Andri Prasetyo

Abstract

Diabetes mellitus (DM) is a chronic endocrine, metabolic disease characterized by elevated blood glucose levels that will affect more than 500 million adults in 2021. Citrus aurantiifolia peels are discarded by-products that contain flavonoid compounds, offering potential as an antidiabetic herb. This study aims to evaluate C. aurantiifolia water extract (CPWE) compounds responsible for antidiabetic properties through α-glucosidase, α-amylase, and sodium-glucose transporter 2 (SGLT-2) inhibitor using molecular docking simulation. CPWE was extracted using ultrasonic-assisted extraction (UAE) with distilled water, and its chemical profile was then analyzed using LC-MS/MS. Compounds detected in LC-MS/MS were tested for antidiabetic activity using molecular docking simulation carried out using Molegro Virtual Docker into α-glucosidase (PDB ID: 3A4A), α-amylase (PDB ID: 1OSE), SGLT-2 (PDB ID: 7VSI), and dipeptidyl peptidase 4 (DPP-4) (PBD ID: 3G0B). The major compounds found in CPWE were hesperidin, limonin, and scoparone, along with other compounds, including hesperetin, naringin, naringenin, bergaptol, citric acid, quercetin, and rutin. Molecular docking simulation demonstrates that rutin inhibited α-glucosidase, α-amylase, and DPP-4, hesperidin inhibited α-amylase, SGLT-2, and DPP-4, and naringin inhibited SGLT-2. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction of CPWE compounds showed that active compounds have limited absorption and permeability, but none of the CPWE compounds are toxic. Molecular docking predictions of 10 compounds from CPWE revealed that flavonoid compounds have antidiabetic potential.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Molecular Docking Study of Standardized Lime (Citrus aurantiifolia) Peel Decoction as an Antidiabetic Herbal. (2025). Tropical Journal of Natural Product Research , 9(9), 4621 – 4628. https://doi.org/10.26538/tjnpr/v9i9.65

References

1. Magliano DJ, Boyko EJ; IDF Diabetes Atlas 10th edition scientific committee. IDF DIABETES ATLAS. 10th ed. Brussels: International Diabetes Federation; 2021. ISBN: 978-2-930229-98-0

2. Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother. 2023; 168:115734. doi: 10.1016/j.biopha.2023.115734 DOI: https://doi.org/10.1016/j.biopha.2023.115734

3. Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, Rosas SE, Del Prato S, Mathieu C, Mingrone G, Rossing P. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;65(12):1925-1966. Doi: 10.2337/dci22-0034. DOI: https://doi.org/10.1007/s00125-022-05787-2

4. Penjor T, Mimura T, Matsumoto R, Yamamoto M, Nagano Y. Characterization of limes (Citrus aurantifolia) grown in Bhutan and Indonesia using high-throughput sequencing. Sci Rep. 2014; 4(1):4853. Doi: 10.1038/srep04853. DOI: https://doi.org/10.1038/srep04853

5. Rahayu M, Kalima T, Martgrita MM, Sembiring C, Simangunsong L, Elisabeth S, Munawaroh E, Astuti IP, Susiarti S, Oryzanti P, Sihotang VB. Ethnobotany and diversity of Citrus spp.(Rutaceae) as a source of “Kem-kem” traditional medicine used among the Karo sub-ethnic in North Sumatra, Indonesia. Heliyon. 2024; 10(9):e29721. Doi: 10.1016/j.heliyon.2024.e29721. DOI: https://doi.org/10.1016/j.heliyon.2024.e29721

6. Phucharoenrak P, Muangnoi C, Trachootham D. A green extraction method to achieve the highest yield of limonin and hesperidin from lime peel powder (Citrus aurantifolia). Molecules. 2022;2 7(3):820. Doi: 10.3390/molecules27030820. DOI: https://doi.org/10.3390/molecules27030820

7. Desmiaty Y, Sandhiutami NM, Mulatsari E, Maziyah FA, Rahmadhani K, Algifari HO, Jantuna FA. Antioxidant and anti-inflammatory activity through inhibition of NF-κB and sEH of some citrus peel and phytoconstituent characteristics. Saudi Pharm J. 2024; 32(2):101959. Doi: 10.1016/j.jsps.2024.101959 DOI: https://doi.org/10.1016/j.jsps.2024.101959

8. Indriyani NN, Anshori JA, Permadi N, Nurjanah S, Julaeha E. Bioactive components and their activities from different parts of Citrus aurantifolia (christm.) Swingle for food development. Foods. 2023; 12(10):2036. Doi: 10.3390/foods12102036. DOI: https://doi.org/10.3390/foods12102036

9. Kim S, Kim D, Lee J, Han JK, Um MY, Jung JH, Yoon M, Choi Y, Oh Y, Youn JH, Cho S. Novel neuropharmacological activity of citrus lime (Citrus aurantifolia): A standardized lime peel supplement enhances non-rapid eye movement sleep by activating the GABA type A receptor. Biomed Pharmacother. 2024: 179:117410. Doi: 10.1016/j.biopha.2024.117410. DOI: https://doi.org/10.1016/j.biopha.2024.117410

10. Bouyahya A, Balahbib A, Khalid A, Makeen HA, Alhazmi HA, Albratty M, Hermansyah A, Ming LC, Goh KW, El Omari N. Clinical applications and mechanism insights of natural flavonoids against type 2 diabetes mellitus. Heliyon. 2024; 10(9):e29718. Doi: 10.1016/j.heliyon.2024.e29718. DOI: https://doi.org/10.1016/j.heliyon.2024.e29718

11. Ahmad A, Sartini S, Hasan N, Permana AD, Leman Y, Duppa MT, Karim H, Fajriah S, Sapar A, Atun S. Evaluation of Antidiabetic Effects of Watermelon Rind Extract: Integrative Computational Simulations and In Vitro Studies. Trop J Nat Prod Res. 2024; 8(10). Doi: 10.26538/tjnpr/v8i10.3 DOI: https://doi.org/10.26538/tjnpr/v8i10.3

12. Rollando R, Maulada F, Afthoni MH, Monica E, Yuniati Y, Nugraha AT. Screening Carica Papaya Compounds as an Antimalarial Agent: In Silico Study. Trop J Nat Prod Res. 2023; 7(5). Doi: https://doi.org/10.26538/tjnpr/v7i5.9. DOI: https://doi.org/10.26538/tjnpr/v7i5.9

13. Desmiaty Y, Xavier F, Sandhiutami NM, Noviani Y, Alatas F, Agustin R. Unlocking the potential of Citrus aurantiifolia bioactive compounds, functional benefits, and food applications: A comprehensive review. Food Biosci. 2025; 28:106259. DOI: https://doi.org/10.1016/j.fbio.2025.106259

14. Indonesian Ministry of Health. Indonesian Herbal Pharmacopoeia. 2nd ed. Jakarta: Indonesian Ministry of Health; 2017.

15. Prasetiyo A, Mumpuni E, Luthfiana D, Herowati R, Putra G. In silico discovery of potential sodium-glucose cotransporter-2 (SGLT-2) inhibitors from Smallanthus sonchifolius (Poepp.) H.Rob. via molecular docking and molecular dynamics simulation approach. J Pharm Pharmacogn Res. 2025; 13:716–728. Doi:10.56499/jppres24.2104_13.3.716. DOI: https://doi.org/10.56499/jppres24.2104_13.3.716

16. Gonzalez JM, Aranda B. Microbial growth under limiting conditions-future perspectives. Microorganisms. 2023; 11(7):1641. Doi: 10.3390/microorganisms11071641. DOI: https://doi.org/10.3390/microorganisms11071641

17. Kim D, Kim B, Yun E, Kim J, Chae Y, Park S. Statistical quality control of total ash, acid-insoluble ash, loss on drying, and hazardous heavy metals contained in the component medicinal herbs of “Ssanghwatang”, a widely used oriental formula in Korea. J Nat Med. 2013; 67:27-35. Doi: 10.1007/s11418-012-0640-4 DOI: https://doi.org/10.1007/s11418-012-0640-4

18. Phucharoenrak P, Muangnoi C, Trachootham D. Metabolomic analysis of phytochemical compounds from ethanolic extract of lime (Citrus aurantifolia) peel and its anti-cancer effects against human hepatocellular carcinoma cells. Molecules. 2023; 28(7):2965. Doi: 10.3390/molecules28072965. DOI: https://doi.org/10.3390/molecules28072965

19. El-Kersh DM, Ezzat SM, Salama MM, Mahrous EA, Attia YM, Ahmed MS, Elmazar MM. Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer. Sci Rep. 2021; 11(1):7121. Doi: 10.1038/s41598-021-86599-z. DOI: https://doi.org/10.1038/s41598-021-86599-z

20. Brito A, Ramirez JE, Areche C, Sepúlveda B, Simirgiotis MJ. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules. 2014; 19(11):17400-17421. Doi: 10.3390/molecules191117400. DOI: https://doi.org/10.3390/molecules191117400

21. Song B, Hao M, Zhang S, Niu W, Li Y, Chen Q, Li S, Tong C. Comprehensive review of Hesperetin: Advancements in pharmacokinetics, pharmacological effects, and novel formulations. Fitoterapia. 2024; 179:106206. Doi: 10.1016/j.fitote.2024.106206. DOI: https://doi.org/10.1016/j.fitote.2024.106206

22. Fan S, Zhang C, Luo T, Wang J, Tang Y, Chen Z, Yu L. Limonin: a review of its pharmacology, toxicity, and pharmacokinetics. Molecules. 2019; 24(20):3679. Doi: 10.3390/molecules24203679. DOI: https://doi.org/10.3390/molecules24203679

23. Hui Y, Wang X, Yu Z, Fan X, Cui B, Zhao T, Mao L, Feng H, Lin L, Yu Q, Zhang J. Scoparone as a therapeutic drug in liver diseases: Pharmacology, pharmacokinetics and molecular mechanisms of action. Pharmacol Res. 2020; 160:105170. Doi: 10.1016/j.phrs.2020.105170. DOI: https://doi.org/10.1016/j.phrs.2020.105170

24. Fang H, Zhang A, Yu J, Wang L, Liu C, Zhou X, Sun H, Song Q, Wang X. Insight into the metabolic mechanism of scoparone on biomarkers for inhibiting Yanghuang syndrome. Sci Rep. 2016; 6(1):37519. Doi: 10.1038/srep37519. DOI: https://doi.org/10.1038/srep37519

25. Wang Y, Wang M, Chen B, Shi J. Scoparone attenuates high glucose-induced extracellular matrix accumulation in rat mesangial cells. Eur Journal Pharmacol. 2017; 815:376-380. Doi: 10.1016/j.ejphar.2017.09.039 DOI: https://doi.org/10.1016/j.ejphar.2017.09.039

26. Gupta A, Jacobson GA, Burgess JR, Jelinek HF, Nichols DS, Narkowicz CK, Al-Aubaidy HA. Citrus bioflavonoids dipeptidyl peptidase-4 inhibition compared with gliptin antidiabetic medications. Biochem Biophys Res Commun. 2018; 503(1):21-25. Doi: 10.1016/j.bbrc.2018.04.156. DOI: https://doi.org/10.1016/j.bbrc.2018.04.156

27. Lam TP, Tran NV, Pham LH, Lai NV, Dang BT, Truong NL, Nguyen-Vo SK, Hoang TL, Mai TT, Tran TD. Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. Nat Prod Bioprospect. 2024; 14(1):4. Doi: 10.1007/s13659-023-00424-w. DOI: https://doi.org/10.1007/s13659-023-00424-w

28. Kashtoh H, Baek KH. Recent updates on phytoconstituent alpha-glucosidase inhibitors: An approach towards the treatment of type two diabetes. Plants. 2022;11(20):2722. Doi: 10.3390/plants11202722. DOI: https://doi.org/10.3390/plants11202722

29. Tolmie M, Bester MJ, Apostolides Z. Inhibition of α‐glucosidase and α‐amylase by herbal compounds for the treatment of type 2 diabetes: a validation of in silico reverse docking with in vitro enzyme assays. J Diabetes. 2021 Oct;13(10):779-791. Doi: 10.1111/1753-0407.13163 DOI: https://doi.org/10.1111/1753-0407.13163

30. Macalalad MA, Gonzales III AA. In silico screening and identification of antidiabetic inhibitors sourced from phytochemicals of Philippine plants against four protein targets of diabetes (PTP1B, DPP-4, SGLT-2, and FBPase). Molecules. 2023; 28(14):5301. Doi: 10.3390/molecules28145301. DOI: https://doi.org/10.3390/molecules28145301

31. Yin R, Xu Y, Wang X, Yang L, Zhao D. Role of dipeptidyl peptidase 4 inhibitors in antidiabetic treatment. Molecules. 2022; 27(10):3055. Doi: 10.3390/molecules27103055. DOI: https://doi.org/10.3390/molecules27103055

32. Shaikh S, Lee EJ, Ahmad K, Ahmad SS, Lim JH, Choi I. A comprehensive review and perspective on natural sources as dipeptidyl peptidase-4 inhibitors for management of diabetes. Pharmaceuticals. 2021; 14(6):591. Doi: 10.3390/ph14060591. DOI: https://doi.org/10.3390/ph14060591

33. Ramani J, Shah H, Vyas VK, Sharma M. A review on the medicinal chemistry of sodium glucose co-transporter 2 inhibitors (SGLT2-I): Update from 2010 to present. Eur J Med Chem Rep. 2022; 6:100074. Doi: 10.1016/j.ejmcr.2022.100074 DOI: https://doi.org/10.1016/j.ejmcr.2022.100074

34. Bhattacharya S, Rathore A, Parwani D, Mallick C, Asati V, Agarwal S, Rajoriya V, Das R, Kashaw SK. An exhaustive perspective on structural insights of SGLT2 inhibitors: A novel class of antidiabetic agent. Eur J Med Chem. 2020; 204:112523. Doi: 10.1016/j.ejmech.2020.112523. DOI: https://doi.org/10.1016/j.ejmech.2020.112523

35. Pan J, Zhang Q, Zhang C, Yang W, Liu H, Lv Z, Liu J, Jiao Z. Inhibition of dipeptidyl peptidase-4 by flavonoids: Structure–activity relationship, kinetics and interaction mechanism. Front Nutr. 2022: 9:892426. Doi: 10.3389/fnut.2022.892426. DOI: https://doi.org/10.3389/fnut.2022.892426

36. Pérez MA, Sanz MB, Torres LR, Ávalos RG, González MP, Díaz HG. A topological sub-structural approach for predicting human intestinal absorption of drugs. Eur J Med Chem. 2004; 39(11):905-916. Doi: 10.1016/j.ejmech.2004.06.012. DOI: https://doi.org/10.1016/j.ejmech.2004.06.012

37. Klimoszek D, Jeleń M, Dołowy M, Morak-Młodawska B. Study of the lipophilicity and ADMET parameters of new anticancer diquinothiazines with pharmacophore substituents. Pharmaceuticals. 2024; 17(6):725. Doi: 10.3390/ph17060725. DOI: https://doi.org/10.3390/ph17060725

38. Sur VP, Sen MK, Komrskova K. In silico identification and validation of organic triazole based ligands as potential inhibitory drug compounds of SARS-CoV-2 main protease. Molecules. 2021; 26(20):6199. Doi: 10.3390/molecules26206199. DOI: https://doi.org/10.3390/molecules26206199

39. Daoui O, Elkhattabi S, Chtita S, Elkhalabi R, Zgou H, Benjelloun AT. QSAR, molecular docking and ADMET properties in silico studies of novel 4, 5, 6, 7-tetrahydrobenzo [D]-thiazol-2-Yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase. Heliyon. 2021; 7(7):e07463. Doi: 10.1016/j.heliyon.2021.e07463. DOI: https://doi.org/10.1016/j.heliyon.2021.e07463

40. Lagorce D, Douguet D, Miteva MA, Villoutreix BO. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci Rep. 2017; 7:46277. Doi: 10.1038/srep46277. DOI: https://doi.org/10.1038/srep46277

41. Suo Y, Wright NJ, Guterres H, Fedor JG, Butay KJ, Borgnia MJ, Im W, Lee SY. Molecular basis of polyspecific drug and xenobiotic recognition by OCT1 and OCT2. Nat Struct Mol Biol. 2023; 30(7):1001-1011. Doi: 10.1038/s41594-023-01017-4. DOI: https://doi.org/10.1038/s41594-023-01017-4

42. Messer A, Raquet N, Lohr C, Schrenk D. Major furocoumarins in grapefruit juice II: phototoxicity, photogenotoxicity, and inhibitory potency vs. cytochrome P450 3A4 activity. Food Chem Toxicol. 2012; 50(3-4):756-60. Doi: 10.1016/j.fct.2011.11.023. DOI: https://doi.org/10.1016/j.fct.2011.11.023