Metabolite Profiling of the Ethanol and Ethyl Acetate Extracts of Ulva lactuca using UPLC-QToF-MS/MS

Main Article Content

Intan K Prasetyanti
Amitasari Damayanti

Abstract

Ulva lactuca, commonly known as sea lettuce, is a marine green algae known for its diverse pharmacological activities such as antioxidant, antimicrobial, antidiabetic, wound healing, and anti-inflammatory activities. This algae can be found in intertidal zones, where it is attached to rocks. Its growth is quite fast due to its rapid absorption of nutrients from seawater. This study aimed to determine the metabolite profile of Ulva lactuca originating from Rembang, Central Java, Indonesia, a region where Ulva lactuca has not been explored. Ulva lactuca was extracted with 96% ethanol and ethyl acetate using Ultrasound-Assisted Extraction (UAE) method. The extracts obtained were analyzed for their metabolites profile using the Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight-Tandem Mass Spectrometry (UPLC-QToF-MS/MS). The resulting data were processed with MassLynx 4.1 software and further identified using the ChemSpider and MassBank databases. A total of 66 compounds were detected, comprising 43 known compounds and 23 unidentified compounds. The predominant compound in both the 96% ethanol and ethyl acetate extracts was 1-carboxy-3-hydroxyadamantane, with a percentage peak area of 21.71% and 19.87%, respectively.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Metabolite Profiling of the Ethanol and Ethyl Acetate Extracts of Ulva lactuca using UPLC-QToF-MS/MS. (2025). Tropical Journal of Natural Product Research , 9(9), 4343 – 4352. https://doi.org/10.26538/tjnpr/v9i9.33

References

1.El-Beltagi HS, Mohamed AA, Mohamed HI, Ramadan KMA, Barqawi AA, Mansour AT. Review: Phytochemical and Potential Properties of Seaweeds and Their Recent Applications. Mar Drugs. 2022; 20(6):342. doi: 10.3390/md20060342. DOI: https://doi.org/10.3390/md20060342

2.Adarshan S, Sree VSS, Muthuramalingam P, Nambiar KS, Sevanan M, Satish L, Venkidasamy B, Jeelani PG, Shin H. Review: Understanding Macroalgae A Comprehensive Exploration of Nutraceutical, Pharmaceutical, and Omics Dimensions. Plants. 2024; 13:113. DOI: https://doi.org/10.3390/plants13010113

3.Sundari LPR, Wijaya PAW. Review: Sea Lettuce (Ulva lactuca) as a Source of Dietary Antioxidant. Trop J Nat Prod Res. 2021; 5(4):603-608. DOI: https://doi.org/10.26538/tjnpr/v5i4.1

4.Ismail GA, Gheda SF, Abo-Shady AM, Abdel-Karim OH. In Vitro Potential Activity of Some Seaweeds as Antioxidants and Inhibitors of Diabetic Enzymes. Food Sci Technol. 2020; 40(3):681-691. https://doi.org/10.1590/fst.15619. DOI: https://doi.org/10.1590/fst.15619

5.Jacoeb AM, Abdullah A, Hakimah SN. Potential of Ulvan From Ulva lactuca as an Antioxidant Source. Indones J Aquat Prod Technol. 2024; 27(3):242-251. https://doi.org/10.17844/jphpi.v27i3.46950. DOI: https://doi.org/10.17844/jphpi.v27i3.46950

6.Saritha K, Mani AE, Priyalaxmi M, Patterson J. Antibacterial Activity and Biochemical Constituents of Seaweed Ulva lactuca. Glob J Pharmacol. 2013; 7(3):276-282. http://dx.doi.org/10.5829/idosi.gjp.2013.7.3.75156.

7.Ardita NF, Mithasari L, Untoro D, Salasia SIO. Review: Potential Antimicrobial Properties of the Ulva lactuca Extract Against Methicillin-Resistant Staphylococcus aureus-Infected Wounds. Vet World. 2021; 14(8):1116-1123. DOI: https://doi.org/10.14202/vetworld.2021.1116-1123

8.Farhan AM, Hanifan AZ, Ismi R, Fikriyani A, Maulita CT, Rieuwpassa IE. Review: Potential Extract of Green Algae (Ulva lactuca) as Antimicrobial in Mouthwash. Makassar Dent J. 2022; 11(3):270-274. https://doi.org/10.35856/mdj.v11i3.640. DOI: https://doi.org/10.35856/mdj.v11i3.640

9.Ibrahim MIA, Amer MS, Ibrahim HAH, Zaghloul. Considerable Production of Ulvan From Ulva lactuca With Special Emphasis on Its Antimicrobial and Anti-Fouling Properties. Appl Biochem Biotechnol. 2022; 194:3097-3118. https://doi.org/10.1007/s12010-022-03867-y. DOI: https://doi.org/10.1007/s12010-022-03867-y

10.Kammoun I, Salah HB, Saad HB, Cherif B, Droguet M. Hypolipidemic and Cardioprotective Effects of Ulva Lactuca Ethanolic Extract in Hypercholesterolemic Mice. J Metab Dis. 2018; 124(4):313-325. https://doi.org/10.1080/13813455.2017.1401641. DOI: https://doi.org/10.1080/13813455.2017.1401641

11.Rinawati R, Muhsin SW, Ayunda HM. Effectiveness of Water Extract of Sea Lettuce (Ulva lactuca) From Aceh Waters to Reduce Blood Glucosa Levels in Diabetic Rats. J Nutr Sci. 2022; 3(2):60-66. https://doi.org/10.35308/jns.v3v2.6833. DOI: https://doi.org/10.35308/jns.v3i2.6833

12.Aunurrahman MRA, Putri AR, Ishlahi SDN, Putri RM, Tito AAB, Rizaldi MH, Dewi CP. Potential of Ulva lactuca and Sargassum duplicatum as Antihyperglycemic Agents in Type 2 Diabetes Mellitus. J Biol Trop. 2024; 24(4):887-894. http://doi.org/10.29303/jbt.v24i4.7756. DOI: https://doi.org/10.29303/jbt.v24i4.7756

13.Chen Y, Wu W, Ni X, Farag MA, Capanoglu E, Zhao C. Regulatory Mechanism of the Green Alga Ulva lactuca Oligosaccharide Via the Metabolomics and Gut Microbiome in Diabetic Mice. Curr Res Food Sci. 2022; 5:1127-1139. https://doi.org/10.1016/j.crfs.2022.07.003. DOI: https://doi.org/10.1016/j.crfs.2022.07.003

14.Labbaci FZ and Boukortt FO. Beneficial Effects of Algerian Green Alga Ulva lactuca and Its Hydroethanolic Extract on Insulin Resistance and Cholesterol Reverse Transport in High-Fat/Streptozotocin Diabetic Rats. Prev Nutr Food Sci. 2020; 25(4):353–361. https://doi.org/10.3746/PNF.2020.25.4.353.

15.Alam SS, Kader H, Rahim A, Hamed S, Saber. The Protective Role of Ulva lactuca Against Genotoxic and Biochemical Effects Induced by γ-Irradiation in Rats. Int J Pharm Sci. 2016; 37(2):40-48. http://dx.doi.org/10.21608/rpbs.2019.12251.1032.

16.Jimenez-Lopez C, Pereira AG, Lourenço-Lopes C, Garcia-Oliveira P, Cassani L, Fraga-Corral M, Prieto MA, Simal-Gandara J. Main Bioactive Phenolic Compounds in Marine Algae and Their Mechanisms of Action Supporting Potential Health Benefits. Food Chem. 2021; 341:128262. https://doi.org/10.1016/j.foodchem.2020.128262. DOI: https://doi.org/10.1016/j.foodchem.2020.128262

17.Thanh TTT, Quach TMT, Nguyen TN, Luong DV, Bui ML, Tran TTV. Structure and Cytotoxic Activity of Ulvan Extracted from Green Seaweed Ulva lactuca. Int J Biol Macromol. 2016; 93(A):695-702. https://doi.org/10.1016/j.ijbiomac.2016.09.040. DOI: https://doi.org/10.1016/j.ijbiomac.2016.09.040

18.Tong T, Liu YJ, Zhang P, Kang SG. Antioxidant, Anti-Inflammatory, and α-Amylase Inhibitory Activities of Ulva lactuca Extract. Korean J Food Sci Preserv. 2020; 27(4):513-521. https://doi.org/10.11002/kjfp.2020.27.4.513. DOI: https://doi.org/10.11002/kjfp.2020.27.4.513

19.Utami D, Wahyudi R, Widyaningsih W. The Sulphated Polysaccharide Compounds from Green Algae (Ulva lactuca L.) as Potential Natural Anti-Inflammatory Agent Based on Molecular Docking Study Targeting Cyclooxygenase-2 Receptor. Pharmaciana. 2023; 13(2):146-158. https://doi.org/10.12928/pharmaciana.v13i2.25848. DOI: https://doi.org/10.12928/pharmaciana.v13i2.25848

20.Morais T, Cotas J, Pacheco D, Pereira L. Seaweeds Compounds: An Eco Sustainable Source of Cosmetic Ingredients. Cosmetics. 2021; 8(1):8. https://doi.org/10.3390/cosmetics8010008. DOI: https://doi.org/10.3390/cosmetics8010008

21.Carpena M, Pereira CSGP, Silva A, Barciela P, Jorge AOS, Vazquez AP, Pereira AG, Barreira JCM, Oliveira MBPP, Prieto MA. Review: Metabolite Profiling of Macroalgae: Biosynthesis and Beneficial Biological Properties of Active Compounds. Mar Drugs. 2024; 22:478. DOI: https://doi.org/10.3390/md22100478

22.Mateos R, Corea JRP, Dominguez H. Review: Bioactive Properties of Marine Phenolics. Mar Drugs. 2020; 18:501. doi: 10.3390/md18100501. DOI: https://doi.org/10.3390/md18100501

23.Madalena S, Vieira L, Almelda AP, Kijjoa A. The Marine Macroalgae of the Genus Ulva: Chemistry, Biological Activities and Potential Applications. Oceanography. 2013; 1(1):101. 10.4172/2332-2632.1000101.

24.Pappou S, Dardavila MM, Savvidou MG, Louli V, Magoulas K, Voutss E. Extraction of Bioactive Compounds from Ulva lactuca. Appl Sci. 2022; 12:2117. https://doi.org/10.3390/app12042117. DOI: https://doi.org/10.3390/app12042117

25.Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernandez J, Bozzo C. Dietary Fiber, Amino Acid, Fatty Acid and Tocopherol Contents of the Edible Seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem. 2006; 99:98–104. http://dx.doi.org/10.1016/j.foodchem.2005.07.027. DOI: https://doi.org/10.1016/j.foodchem.2005.07.027

26.Yaich H, Garna H, Besbes S, Paquot M, Blecker C, Attia H. Chemical Composition and Functional Properties of Ulva lactuca Seaweed Collected in Tunisia. Food Chem. 2011; 128(4):895–901. https://doi.org/10.1016/j.foodchem.2011.03.114. DOI: https://doi.org/10.1016/j.foodchem.2011.03.114

27.Kidgel JT, Magnusson M, Nys R, Glasson CRK. Ulvan: A Systematic Review of Extraction, Composition and Function. Algae Res. 2019; 39:101422. https://doi.org/10.1016/j.algal.2019.101422 DOI: https://doi.org/10.1016/j.algal.2019.101422

28.Zaatout H, Ghareeb D, Abd-Elgwad A, Ismael A. Phytochemical, Antioxidant, and Anti-Inflammatory Screening of the Egyptian Ulva lactuca Methanolic Extract. Rec Pharm Biomed Sci. 2019; 3(2):33–38. https://doi.org/10.21608/rpbs.2019.12251.1032. DOI: https://doi.org/10.21608/rpbs.2019.12251.1032

29.Tziveleka LA, Ioannou E, Roussis V. Ulvan a Bioactive Marine Sulphad Polysaccharide as a Key Constituent of Hybrid Biomaterials: Review: Carbohydr Polym. 2019; 218:355-370. https://doi.org/10.1016/j.carbpol.2019.04.074. DOI: https://doi.org/10.1016/j.carbpol.2019.04.074

30.El-Mesallamy AMD, Amer TN, Mohamed SZ, Ali YM, Hussein SAM. Phytochemical Constituents of Ulva lactuca and Supplementation to Improve the Nile Tilapia (Oreochromis niloticus) Haemato-Biochemical Status. Egypt J Chem. 2021; 64(5):2663-2670. https://doi.org/10.21608/ejchem.2021.60453.3296. DOI: https://doi.org/10.21608/ejchem.2021.60453.3296

31.Chabake V and Chaubal S. Phytochemical Constituent of Ulva lactuca L. Collected Form Mahin Beach (Dist. Palghar). Indian J Pure Appl Biosci. 2020; 8(2):311-315. http://dx.doi.org/10.18782/2582-2845.8049. DOI: https://doi.org/10.18782/2582-2845.8049

32.Oakley CE, Ahuja M, Sun WW, Entwistle R, Akashi T, Yaegashi J, Guo CJ. Discovery of McrA, a Master Regulator of Aspergillus Secondary Metabolism. Mol Microbiol. 2016; 103(2):347-365. https://doi.org/10.1111/mmi.13562. DOI: https://doi.org/10.1111/mmi.13562

33.Yunita NLGD, Wrasiati LP, Suhendra L. Karakteristik Senyawa Bioaktif Ekstrak Selada Laut (Ulva Lactuca L.) Pada Konsentrasi Pelarut Etanol dan Lama Ekstraksi. J Rekayasa Manaj

Agroindustri. 2018; 6(3):189-195. https://doi.org/10.24843/JRMA.2018.v06.i03.p01. DOI: https://doi.org/10.24843/JRMA.2018.v06.i03.p01

34.Gross JH. Mass Spectrometry. Springer Cham. 2017. https://doi.org/10.1007/978-3-319-54398-7. DOI: https://doi.org/10.1007/978-3-319-54398-7

35.Naushad MU and Khan MR. Ultra Performance Liquid Chromatography Mass Spectrometry: Evaluation and Applications in Food Analysis. New York: CRC Press. 2015. DOI: https://doi.org/10.1201/b16670

36.Casais AC, Otero P, Perez PG, Oliveira PG, Pereira AG, Carpena M, Lopez AS, Gandara JS, Prieto MA. Review: Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int J Environ Res Public Health. 2021; 18(17):9153. DOI: https://doi.org/10.3390/ijerph18179153

37.Shen L, Pang S, Zhong M, Sun Y, Qayum A, Liu Y, Rashid A, Xu B, Liang Q, Ma H, Ren X. Review: A Comprehensive Review of Ultrasonic Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies. Ultrason Sonochem. 2023; 101:106646. https://doi.org/10.1016/j.ultsonch.2023.106646 DOI: https://doi.org/10.1016/j.ultsonch.2023.106646

38.Ramadhan W, Uju, Hardiningtyas SD, Pari RF, Nurhayati, Sevica D. Ultrasonic Wave Assisted Extraction of Ulvan Polysaccharide from Ulva lactuca Seaweed at Low Temperature. Indones J Aquat Prod Technol. 2022; 25(1):132-142. https://doi.org/10.17844/jphpi.v25i1.40407. DOI: https://doi.org/10.17844/jphpi.v25i1.40407

39.Zhou Q, Hambley TW, Kennedy BJ, Lay PA, Turner P. Syntheses and Characterization of Anti-Inflammatory Dinuclear and Mononuclear Zinc Indomethacin Complexes. Crystal Structures of [Zn2(Indomethacin)4(L)2] (L = N,N-Dimethylacetamide, Pyridine, 1-Methyl-2-pyrrolidinone) and [Zn(Indomethacin)2(L1)2] (L1 = Ethanol, Methanol). Inorg Chem. 2000; 39:3742-3748. https://doi.org/10.1021/ic991477i DOI: https://doi.org/10.1021/ic991477i

40.Al-Badr AA and Alodhaib MM. Profiles of Drug Substances, Excipients and Related Methodology. In: Chapter Four-Dacarbazine. 2016; 41:323-377. https://doi.org/10.1016/bs.podrm.2015.12.002 DOI: https://doi.org/10.1016/bs.podrm.2015.12.002

41.Ugurel S, Paschen A, Becker J. Dacarbazine in Melanoma: From Chemotherapeutic Drug to an Immunomodulating Agent. J Invest Dermatol. 2013; 133(2):289-292. https://doi.org/10.1038/jid.2012.341 DOI: https://doi.org/10.1038/jid.2012.341

42.Patane FG, Liberto A, Maglitto ANM, Malandrino P, Esposito M. Nadrolone Decanoate: Use, Abuse and Side Effect. Medicina. 2020; 56(11):606. https://doi.org/10.3390/medicina56110606 DOI: https://doi.org/10.3390/medicina56110606

43.Guerrero JLG. Stearidonic Acid: Metabolism, Nutritional Importance, Medical Uses and Natural Sources. Eur J Lipid Sci Technol. 2007; 109: 1226-1236. https://doi.org/10.1002/ejlt.200700207 DOI: https://doi.org/10.1002/ejlt.200700207

44.Nunes LM, Hossain M, Ramirez AV. A Novel Class of Piperidones Exhibit Potent, Selective and Pro-Apoptotic Anti-Leukemia Properties. Oncol Lett. 2016; 3842-3848. https://doi.org/10.3892%2Fol.2016.4480 DOI: https://doi.org/10.3892/ol.2016.4480

45.Numazawa T. Treating Depression with the Mephenesin Analog Skeletal Muscle Relaxant Methocarbamol. Open J Depress. 2016; 5(4):40-47. http://dx.doi.org/10.4236/ojd.2016.54005 DOI: https://doi.org/10.4236/ojd.2016.54005

46.Zhang Y, Tounekti O, Akerman B, Goodyer CG, LeBlanc A. 17-β-Estradiol Induces an Inhibitor Active Caspases. J Neurosci. 2001; 21:176-182. https://doi.org/10.1523/jneurosci.21-20-j0007.2001 DOI: https://doi.org/10.1523/JNEUROSCI.21-20-j0007.2001

47.Hay CJ, Brady BM, Zitzmann M, Osmanagaoglu K. Combination of Intramuscular Androgen (Testosterone Decanoate) and Oral Progesterone (Etonogestrel) for Male Hormonal Contraception. J Clin Endocrinol Metab. 2005; 2042-2049. https://doi.org/10.1210/jc.2004-0895 DOI: https://doi.org/10.1210/jc.2004-0895

48.Fasihnia SH, Peighambardoust SH, Peighambardoust SJ, Oromiehie A. Migration Analysis, Antioxidant, and Mechanical Characterization of Polypropylene-Based Active Food Packaging Films Loaded With BHA, BHT, and TBHQ. J Food Sci. 2020; 85(8); 2317-2328. http://dx.doi.org/10.1111/1750-3841.15337 DOI: https://doi.org/10.1111/1750-3841.15337

49.Mutavski Z, Jerkovic I, Nikolic NC, Radman S, Flanjak I, Aladic K, Subaric D, Vulic J, Jokic S. Comprehensive Phytochemical Profiling of Ulva lactuca From the Adriatic Sea. Int J Mol Sci. 2024; 25:11711. https://doi.org/10.3390/ijms252111711 DOI: https://doi.org/10.3390/ijms252111711

50.Labbaci FZ and Boukortt FO. Beneficial Effects of Algerian Green Alga Ulva lactuca and Its Hydroethanolic Extract on Insulin Resistance and Cholesterol Reverse Transport in High-Fat/Streptozotocin Diabetic Rats. Prev Nutr Food Sci. 2020; 25(4):353–361. https://doi.org/10.3746/PNF.2020.25.4.353 DOI: https://doi.org/10.3746/pnf.2020.25.4.353

51.Ma'arif B, Mirza DM, Suryadinata A, Muchlisin MA, Agil M. Metabolite Profiling of 96% Ethanol Extract from Marsilea crenata Presl. Leaves Using UPLC-QToF-MS/MS and Anti-Neuroinflammatory Prediction Activity with Molecular Docking. J Trop Pharm Chem. 2019; 4(6):261-270. https://doi.org/10.25026/jtpc.v4i6.213 DOI: https://doi.org/10.25026/jtpc.v4i6.213