Potential of Ganoderma applanatum Extract as Anticancer and Immunomodulator in Diethylnitrosamine-induced Colon Cancer
Main Article Content
Abstract
Ganoderma applanatum extract (GAE) exhibits numerous biological activities, particularly anticancer and immunomodulatory activities. This study aimed to examine the effect of GAE on colonic goblet cells, Lieberkuhn crypts, CD4+ and CD8+ cells in mice spleen. Mice were randomly divided into four groups (n = 6): normal control (KN) group given only distilled water, negative control (K-) group administered 100 mg/kg BW diethylnitrosamine (DEN), positive control (K+) group administered 100 mg/kg BW DEN + 10 mg/kg BW doxorubicin, and extract treatment (P) group administered 100 mg/kg BW DEN + 150 mg/kg BW GAE. Colon histology was assessed using haematoxylin and eosin staining. CD4+ and CD8+ percentages were determined by flow cytometry. Molecular docking of selected bioactive compounds of GAE with CD4+ (PDB ID: 1CDJ) and CD8+ (PDB ID: 1CD8) was performed using PyMol v1.74 and PyRx 0.8 software, with visualization using BIOVIA Discovery Studio 2019 and molecular dynamics via CABS-flex webserver. GAE significantly increased the number of goblet cells and Lieberkuhn crypt height in mice colon, with values of 28.00 ± 4.05 and 29.24 ± 4.61 µm, respectively. GAE improved colon histology and enhanced immunomodulation by increasing CD4+ and CD8+ cells in mice spleen, with values of 21.98 ± 3.03%, and 8.34 ± 0.86%, respectively. Molecular docking indicated lucidenic B had the highest binding affinity against CD4+ cells, while β-glucan had the highest binding affinity against CD8+ cells. Molecular dynamics confirmed complex stability (Root mean square fluctuation (RMSF) < 3 Å), suggesting stable ligand-receptor interactions in the plasma.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Dewi NNA, Pranata AANS, Suksmarini NMPW. KRAS Gene Mutations in Colorectal Cancer. Andalas Med Med. 2021; 44:117-125.
2.Nikmah LM, Fajariyah S, Mahriani M. The Effect of Ethanol Extract Curcuma longa Rhizome (Curcuma Longa) to Histologycal Structure of Rat Rectum Induced Dextran Sodium Sulphate (DSS). J Ilmu Dasar. 2019; 20:13. DOI: https://doi.org/10.19184/jid.v20i1.7629
3.Chaudhary D, Khatiwada S, Sah SK, Tamang MK, Bhattacharya S, Jha CB. Effect of Doxorubicin on Histomorphology of Liver of Wistar Albino Rats. J Pharm Pharmacol. 2016; 4:186-190. DOI: https://doi.org/10.17265/2328-2150/2016.04.004
4.Mohebbati R, Abbsnezhad A, Khajavi Rad A, Mousavi SM, Haghshenas M. Effect of Hydroalcholic Extract of Nigella sativa on Doxorubicin-Induced Functional Damage of Kidney in Rats. Q Horiz Med Sci. 2016; 22:13-20. DOI: https://doi.org/10.18869/acadpub.hms.22.1.13
5.Al Rabadi L and Bergan R. A Way Forward for Cancer Chemoprevention: Think Local. Cancer Prev Res. 2017; 10:14-35. DOI: https://doi.org/10.1158/1940-6207.CAPR-16-0194
6.Walker GM and White NA. Introduction to Fungal Physiology. In: Fungi. Wiley; 1-35p. DOI: https://doi.org/10.1002/9781119374312.ch1
7.Singdevsachan SK, Auroshree P, Mishra J, Baliyarsingh B, Tayung K, Thatoi H. Mushroom Polysaccharides as Potential Prebiotics with Their Antitumor and Immunomodulating Properties: A Review. Bioact Carbohydr Diet Fibre. 2016; 7:1-14. DOI: https://doi.org/10.1016/j.bcdf.2015.11.001
8.Chowdhury M, Kubra K, Ahmed S. Screening of Antimicrobial, Antioxidant Properties and Bioactive Compounds of Some Edible Mushrooms Cultivated in Bangladesh. Ann Clin Microbiol Antimicrob. 2015; 14:8. DOI: https://doi.org/10.1186/s12941-015-0067-3
9.Chavez-Gonzalez ML, Balagurusamy N, Aguilar C. Advances in Food Bioproducts and Bioprocessing Technologies (1st ed.). Boca Raton, FL: CRC Press, Taylor & Francis Group; 2020; Contemporary Food Engineering: CRC Press. doi:10.1201/9780429331817. DOI: https://doi.org/10.1201/9780429331817
10.Hidayati S, Agustin AT, Sari EK, Sari SM, Destiawan RA, Silvana WA. Phytochemical Profiling and Antidiabetic Evaluation of Peperomia pellucida as a Potential Alpha Glucosidase Inhibitor. Biodiversitas J Biol Divers. 2023; 24(11):2023. doi:10.13057/biodiv/d241116. DOI: https://doi.org/10.13057/biodiv/d241116
11.Alifiansyah MRT, Herdiansyah MA, Pratiwi RC, Pramesti RP, Hafsyah NW. QSAR of Acyl Alizarin Red Biocompound Derivatives of Rubia tinctorum Roots and Its ADMET Properties as Anti-Breast Cancer Candidates Against MMP-9 Protein Receptor: In Silico Study. Food Syst. 2024; 7:312-320. DOI: https://doi.org/10.21323/2618-9771-2024-7-2-312-320
12.Herdiansyah MA, Rizaldy R, Alifiansyah MR, Fetty AJT, Anggraini D. Molecular Interaction Analysis of Ferulic Acid (4-hydroxy-3-methoxycinnamic Acid) as Main Bioactive Compound from Palm Oil Waste Against MCF-7 Receptors: An In Silico Study. Narra J. 2024; 4:e775. DOI: https://doi.org/10.52225/narra.v4i2.775
13.Shivanika C, Deepak Kumar S, Ragunathan V, Tiwari P, Sumitha A, Brindha Devi P. Molecular Docking, Validation, Dynamics Simulations, and Pharmacokinetic Prediction of Natural Compounds Against the SARS-CoV-2 Main-Protease. J Biomol Struct Dyn. 2022; 40:585-611. DOI: https://doi.org/10.1080/07391102.2020.1815584
14.Bernal E, Serrano J, Perez A, Valero F, Antela A, Moreno S. The CD4:CD8 Ratio Is Associated with IMT Progression in HIV‐Infected Patients on Antiretroviral Treatment. J Int AIDS Soc. 2014; 17(4 Suppl 3):19723. doi:10.7448/IAS.17.4.19723. DOI: https://doi.org/10.7448/IAS.17.4.19723
15.Birchenough GMH, Johansson ME, Gustafsson JK, Sepehri Z, Nyström EE, Arike L, Hansson GC. New Developments in Goblet Cell Mucus Secretion and Function. Mucosal Immunol. 2015; 8:712-719. DOI: https://doi.org/10.1038/mi.2015.32
16.Paone P and Cani PD. Mucus Barrier, Mucins, and Gut Microbiota: The Expected Slimy Partners? Gut. 2020; 69:2232-2243. doi:10.1136/gutjnl-2020-322260. DOI: https://doi.org/10.1136/gutjnl-2020-322260
17.Al-Kaseem M, Al-Assaf Z, Karabeet F. Determination of Seven Volatile N-Nitrosamines in Fast Food. Pharmacol Pharm. 2014; 5:195-203. DOI: https://doi.org/10.4236/pp.2014.52026
18.Adu AA, Sudiana K, Martini S, Widodo A, Widyanto RM. The Effect of Se’i (Smoked Beef) Toward the Improvement of the Bcl-2 Protein Expression on Colon Cells of Balb/c Strain Mice as a Carcinogenesis Indicator. Indian J Public Health Res Dev. 2018; 9:238. DOI: https://doi.org/10.5958/0976-5506.2018.00044.X
19.Zhang F, Shi JJ, Thakur K, Zhang JG, Wei ZJ, Chen F. Anti-Cancerous Potential of Polysaccharide Fractions Extracted from Peony Seed Dreg on Various Human Cancer Cell Lines Via Cell Cycle Arrest and Apoptosis. Front Pharmacol. 2017; 8:102. doi:10.3389/fphar.2017.00102. DOI: https://doi.org/10.3389/fphar.2017.00102
20.Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018; 25:486-541. DOI: https://doi.org/10.1038/s41418-018-0102-y
21.He C, Gao H, Xin S, Zhang Y, Xue Q, Guan H, Zhang H. View from the Biological Property: Insight into the Functional Diversity and Complexity of the Gut Mucus. Int J Mol Sci. 2023; 24:4227. DOI: https://doi.org/10.3390/ijms24044227
22.Engel N, Falodun A, Kühn J, Ohlendorf B, Weisensee D, Efferth T. Pro-Apoptotic and Anti-Adhesive Effects of Four African Plant Extracts on The Breast Cancer Cell Line MCF-7. BMC Complement Altern Med. 2014; 14:1-13. DOI: https://doi.org/10.1186/1472-6882-14-334
23.Lewis SM, Williams A, Eisenbarth SC. Structure and Function of the Immune System in the Spleen. Sci Immunol. 2019; 4(33):eaau6085. doi:10.1126/sciimmunol.aau6085. DOI: https://doi.org/10.1126/sciimmunol.aau6085
24.Zhang Y, Li X, Li X. Curcumae Ameliorates Diethylnitrosamine-Induced Hepatocellular Carcinoma Via Alteration of Oxidative Stress, Inflammation and Gut Microbiota. J Inflamm Res. 2021; 14:5551-5566. DOI: https://doi.org/10.2147/JIR.S330499
25.Murphy KM and Weaver C. No Title. 9th ed. Garland Science/Taylor & Francis Group, LLC; 2017.
26.Cho C-W, Han C, Rhee YK, Hwang JH, Choi MS, Hong HD. Cheonggukjang Polysaccharides Enhance Immune Activities and Prevent Cyclophosphamide-Induced Immunosuppression. Int J Biol Macromol. 2015; 72:519-525. DOI: https://doi.org/10.1016/j.ijbiomac.2014.09.010
27.Bachelet I and Fuchs Y. Apoptotic Dysregulation Mediates Stem Cell Competition and Tissue Regeneration. Nature Commun. 2023; 14:1-20. DOI: https://doi.org/10.1038/s41467-023-41684-x
28.Delgado ME, Grabinger T, Brunner T. Cell Death at the Intestinal Epithelial Front Line. FEBS J. 2016; 283:2701-2719. DOI: https://doi.org/10.1111/febs.13575
29.van Gorp C, De Lange IH, Massy KRI, Kessels L, Jobe AH, Cleutjens JPM, Kemp MW, Saito M, Usada H, Newnham J, Hütten M, Kramer BW, Zimmermann LJ, Wolfs TGAM. Intestinal Goblet Cell Loss During Chorioamnionitis in Fetal Lambs: Mechanistic Insights and Postnatal Implications. Int J Mol Sci. 2021; 22(4):1946. doi:10.3390/ijms22041946. DOI: https://doi.org/10.3390/ijms22041946
30.Kao CHJ, Jesuthasan AC, Bishop KS, Simmonds MSJ. Anti-Cancer Activities of Ganoderma lucidum: Active Ingredients and Pathways. Funct Foods Heal Dis. 2013; 3:48-65. DOI: https://doi.org/10.31989/ffhd.v3i2.65
31.Cadar E, Negreanu-Pirjol T, Pascale C, Pascale C, Tudoran L, Iovanovici V, Trifan A. Natural Bio-Compounds from Ganoderma lucidum and Their Beneficial Biological Actions for Anticancer Application: A Review. Antioxidants. 2023; 12(11):1907. doi:https://doi.org/10.3390/antiox12111907. DOI: https://doi.org/10.3390/antiox12111907
32.Topchyan P and Lin S. The Role of CD4 T Cell Help in CD8 T Cell Differentiation and Function During Chronic Infection and Cancer. Immune Netw. 2023; 23:1-21. DOI: https://doi.org/10.4110/in.2023.23.e41
33.Hirayama D and Lida T. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. Int J Mol Sci. 2017; 19(1):92. doi:10.3390/ijms19010092. DOI: https://doi.org/10.3390/ijms19010092
34.Duque GA and Descoteaux A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front Immunol. 2014; 5:1-12. DOI: https://doi.org/10.3389/fimmu.2014.00491
35.Meager A and Wadhwa M. An Overview of Cytokine Regulation of Inflammation and Immunity. In: eLS. John Wiley & Sons, Ltd; 2013. doi:10.1002/9780470015902.a0024658. DOI: https://doi.org/10.1002/9780470015902.a0024658
36.Roche PA, and Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015; 15(4):203-216. DOI: https://doi.org/10.1038/nri3818
37.Broeke T, Wubbolts R, Stoorvogel W. MHC Class II Antigen Presentation by Dendritic Cells Regulated Through Endosomal Sorting. Cold Spring Harb Perspect Biol. 2013; 5:1-21. DOI: https://doi.org/10.1101/cshperspect.a016873
38.Sun L, Su Y, Jiao A, Wang X, Zhang B. T Cells in Health and Disease. Sig Transduct Target Ther. 2023; 8(1):235. doi:10.1038/s41392-023-01471-y. DOI: https://doi.org/10.1038/s41392-023-01471-y
39.van Erp EA, Luytjes W, Ferwerda G, van Kasteren PB. Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease. Front Immunol. 2019; 10:548. doi:10.3389/fimmu.2019.00548. DOI: https://doi.org/10.3389/fimmu.2019.00548
40.Koh C, Lee S, Kwak M, Yun H, Kim MS. CD8 T-Cell Subsets: Heterogeneity, Functions, and Therapeutic Potential. Exp Mol Med. 2023; 55:2287-2299. DOI: https://doi.org/10.1038/s12276-023-01105-x
41.Beaudouin J and Watzl C. Single-Fluorescent Protein Reporters Allow Parallel Quantification of Natural Killer Cell-Mediated Granzyme and Caspase Activities in Single Target Cells. Front Immunol. 2018; 9:1840. doi:10.3389/fimmu.2018.01840. DOI: https://doi.org/10.3389/fimmu.2018.01840
42.Noor Z, Ahmad H, Ain Q, Khan F, Ali A, Khan A. Clinics in Oncology Caspase 3 and Its Role in the Pathogenesis of Cancer. Clin Oncol. 2022; 7:1-10.
43.Peter M, Hadji A, Murmann A, Brockway S, Putzbach W, Pattanayak A, Ceppi P. The Role of CD95 and CD95 Ligand in Cancer. Cell Death Differ. 2015; 22:1-11. DOI: https://doi.org/10.1038/cdd.2015.3
44.Yamada A, Arakaki R, Saito M, Kudo Y, Ishimaru N. Dual Role of Fas / FasL-Mediated Signal in Peripheral Immune Tolerance. Front Immunol. 2017; 8:1-10. DOI: https://doi.org/10.3389/fimmu.2017.00403


