Effects of Quercetin Administration on TNF-α, IL-6, Hydroxyproline, and Ashcroft Scores in Preclinical Study of Pulmonary Fibrosis: A Systematic Review and Meta-Analysis

Main Article Content

Lukman N. Rahman
Gondo Mastutik
Anny S. Rahaju

Abstract

Lung fibrosis, a chronic respiratory diseases which is marked by alveolar fibrosis wall thickening with limited treatment options and progression to respiratory failure. There are molecular pathways of signaling associated with pulmonary fibrosis, namely the transforming growth factor beta (TGF-β)/Smad pathway, WNT/β-catenin pathway, and PI3K/Akt/mTOR pathway. Quercetin is a flavonoid which has demonstrated potential antifibrotic and anti-inflammatory actions. This compound suppressing reactive oxygen species dependent on Smad/β-catenin. These studies were designed to evaluate the potency of quercetin in treating pulmonary fibrosis. The studies were conducted via systematic review and meta-analysis following the PRISMA 2020 protocol. Quercetin was administered at a dose of 5–100 mg/kg for 21–42 days. Meta-analysis resulted in a significant reduction in TNF-α (SMD = −3.63; 95% CI: −6.07 to −1.18; p = 0.0037), IL-6 (SMD = −1.29; 95% CI: −1.90 to −0.68; p < 0.0001), hydroxyproline (SMD = −2.95; 95% CI: −4.16 to −1.74; p < 0.0001), and Ashcroft score (SMD = −5.90; 95% CI: −9.44 to −2.36; p = 0.0011). These findings indicate that quercetin effectively reduces inflammation and severity of fibrosis in a preclinical model of pulmonary fibrosis, highlighting its potential as a therapeutic candidate.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Effects of Quercetin Administration on TNF-α, IL-6, Hydroxyproline, and Ashcroft Scores in Preclinical Study of Pulmonary Fibrosis: A Systematic Review and Meta-Analysis . (2025). Tropical Journal of Natural Product Research , 9(9), 4111 – 4116. https://doi.org/10.26538/tjnpr/v9i9.5

References

1.Savin IA, Zenkova MA, Sen’kova A V. Pulmonary fibrosis as a result of acute lung inflammation: molecular mechanisms, relevant in vivo models, prognostic and therapeutic approaches. Int J Mol Sci. 2022; 23(23):14959. Doi :10.3390/ijms232314959

2.Wijsenbeek M, Cottin V. Spectrum of fibrotic lung diseases. N Engl J Med. 2020; 383(10):958–968. Doi: 10.1056/NEJMra2005230

3.Lee JH, Park HJ, Kim S, Kim YJ, Kim HC. Epidemiology and comorbidities in idiopathic pulmonary fibrosis: a nationwide cohort study. BMC Pulm Med. 2023; 23(1):54. Doi: 10.1186/s12890-023-02340-8

4.Koudstaal T, Funke-Chambour M, Kreuter M, Molyneaux PL, Wijsenbeek MS. Pulmonary fibrosis: from pathogenesis to clinical decision-making. Trends Mol Med. 2023; 29(12):1076–1087. Doi: 10.1016/j.molmed.2023.08.010

5.Zhou Y, Ling T, Shi W. Current state of signaling pathways associated with the pathogenesis of idiopathic pulmonary fibrosis. Respir Res. 2024; 25(1):245. Doi:10.1186/s12931-024-02878-z

6.Moss BJ, Ryter SW, Rosas IO. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu Rev Pathol Mech Dis. 2021; 17:515-546. Doi: 10.1146/annurev-pathol-042320-030240

7.Liu H, Shen J, He C. Advances in idiopathic pulmonary fibrosis diagnosis and treatment. Chin Med J Pulm Crit Care Med. 2025; 3(1):12-21. Doi: 10.1016/j.pccm.2025.02.001.

8.Lancaster LH, de Andrade JA, Zibrak JD, Padilla ML, Albera C, Nathan SD, Wijsenbeek MS, Stauffer JL, Kirchgaessler KU, Costabel U. Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis. Eur Respir Rev. 2017; 26(146):170057. Doi: 10.1183/16000617.0057-2017.

9.Wang T, Cui Z, Ou Y, Lou S, Chen H, Zhu C, Zhou L, Zou F. Post-marketing safety concerns with pirfenidone and nintedanib: an analysis of individual case safety reports from the FDA adverse event reporting system database and the Japanese adverse drug event report databases. Front Pharmacol. 2025; 16:1530697. Doi: 10.3389/fphar.2025.1530697.

10.Cho S, Park S, Lee JA, Jung HJ, Kim KI, Lee BJ. The efficacy and safety of herbal medicine with pirfenidone in the treatment of idiopathic pulmonary fibrosis: a systematic review. Processes. 2022; 10(12):2477. Doi: 10.3390/pr10122477

11.Geng F, Xu M, Zhao L, Zhang H, Li J, Jin F, Li Y, Li T, Yang X, Li S, Gao X, Cai W, Mao N, Sun Y, Liu H, Xu H, Wei Z, Yang F. Quercetin alleviates pulmonary fibrosis in mice exposed to silica by inhibiting macrophage senescence. Front Pharmacol. 2022; 13:912029. Doi: 10.3389/fphar.2022.912029.

12.Geng Q, Yan L, Shi C, Zhang L, Li L, Lu P, Cao Z, Li L, He X, Tan Y, Zhao N, Liu B, Lu C. Therapeutic effects of flavonoids on pulmonary fibrosis: a preclinical meta-analysis. Phytomedicine. 2024; 132:155807. Doi: https:// doi. org/ 10. 1016/j. phymed. 2024. 155807

13.Wu X, Xiao X, Su Y, Zhang Y, Li G, Wang F, Du Q, Yang H. Use quercetin for pulmonary fibrosis: a preclinical systematic review and meta-analysis. Inflammopharmacology. 2025; 33(4):1879–1897. Doi: https://doi.org/10.1007/s10787-025-01678-1

14.Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Brit. Med. J. 2021; 372:n71. Doi: 10.1136/bmj.n71.

15.Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, McKenzie JE. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. Brit. Med. J. 2021; 372: n160. Doi: 10.1136/bmj.n160.

16.Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES; ATS Assembly on Respiratory Cell and Molecular Biology. An Official American Thoracic Society workshop report: use of animal models for the preclinical assessment of potential therapies for pulmonary fibrosis. Am J Respir Cell Mol Biol. 2017; 56(5):667–679. Doi: 10.1165/rcmb.2017-0096ST.

17.Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies BMC Med Res Methodol. 2014; 14:43. Doi: 10.1186/1471-2288-14-43.

18.Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018; 27(6): 1785-1805. Doi: 10.1177/0962280216669183.

19.Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014; 14:135. Doi: 10.1186/1471-2288-14-135.

20.Abbas A, Hefnawy MT, Negida A. Meta-analysis accelerator: a comprehensive tool for statistical data conversion in systematic reviews with meta-analysis. BMC Med Res Methodol. 2024; 24(1):243. Doi: 10.1186/s12874-024-02356-6.

21.Drevon D, Fursa SR, Malcolm AL. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav Modif. 2017; 41(2):323-339. Doi: 10.1177/0145445516673998.

22.Rohatgi A. WebPlotDigitizer [Online]. 2020 [cited 2025 March 18]. Available from: https://automeris.io/WebPlotDigitizer.

23.RStudio Team. RStudio: Integrated development environment for R [Online]. 2019 [cited 2025 March 18]. Available from: http://www.rstudio.com/

24.Clephas PRD, Heesen M. Interpretation of meta-analyses. Interv Pain Med. 2022; 1(Suppl 2):100120. Doi: https://doi.org/10.1016/j.inpm.2022.100120.

25.Baowen Q, Yulin Z, Xin W, Wenjing X, Hao Z, Zhizhi C, Xingmei D, Xia Z, Yuquan W, Lijuan C. A further investigation concerning correlation between anti-fibrotic effect of liposomal quercetin and inflammatory cytokines in pulmonary fibrosis. Eur J Pharmacol. 2010; 642(1–3):134–139. Doi: 10.1016/j.ejphar.2010.05.019.

26.Malayeri AR, Hemmati AA, Arzi A, Rezaie A, Ghafurian-Boroojerdnia M, Khalili HR. A Comparison of the effects of quercetin hydrate with those of vitamin E on the levels of IL-13, PDGF, TNF-α, and INF-γ in bleomycin-induced pulmonary fibrosis in rats. Jundishapur J Nat Pharm Prod. 2016; 11(2):e277705. Doi: 10.17795/jjnpp-27705.

27.Verma S, Dutta A, Dahiya A, Kalra N. Quercetin-3-rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling. Phytomedicine. 2022; 99:54004. Doi: 10.1016/j.phymed.2022.154004.

28.Mehrzadi S, Hosseini P, Mehrabani M, Siahpoosh A, Goudarzi M, Khalili H, Malayeri A. Attenuation of bleomycin-induced pulmonary fibrosis in Wistar Rats by combination treatment of two natural phenolic compounds: quercetin and gallic acid. Nutr Cancer. 2021; 73(10):2039–2049. Doi: 10.1080/01635581.2020.1820053.

29.Li Z, Jiao Y, Wu Z, Liu H, Li Y, Cai Y, Wei W, Cao F. The role of quercetin in ameliorating bleomycin-induced pulmonary fibrosis: insights into autophagy and the SIRT1/AMPK signaling pathway. Mol Biol Rep. 2024; 51(1):795-802. Doi: 10.1007/s11033-024-09752-7

30.Verma R, Kushwah L, Gohel D, Patel M, Marvania T, Balakrishnan S. Evaluating the ameliorative potential of quercetin against the bleomycin-induced pulmonary fibrosis in Wistar Rats. Pulm Med. 2013; 2013(1): 921724. Doi: 10.1155/2013/921724.

31.Toker Ç, Kuyucu Y, Şaker D, Kara S, Güzelel B, Mete UÖ. Investigation of miR-26b and miR-27b expressions and the effect of quercetin on fibrosis in experimental pulmonary fibrosis. J Mol Histol. 2024; 55(1):25–35. Doi: 10.1007/s10735-023-10168-z.

32.Hohmann MS, Habiel DM, Coelho AL, Verri WA, Hogaboam CM. Quercetin enhances ligand-induced apoptosis in senescent idiopathic pulmonary fibrosis fibroblasts and reduces lung fibrosis in vivo. Am J Respir Cell Mol Biol. 2019; 60(1):28–40. Doi: 10.1165/rcmb.2017-0289OC.

33.Kristianingsih A, Soetrisno, Reviono R, Wasita B. Molecular docking study of quercetin from ethanol extract of Mimosa pudica Linn on asthma biomarkers. Trop J Nat Prod Res. 2024; 8(10):8640–8645. Available from: https://www.tjnpr.org/index.php/home/article/view/5039

34.Al-Mamoori FF, Wahab HA, Ahmad W. Formulation and Characterisation of pH-sensitive eudragit L-100 nanoparticles for quercetin delivery in lung carcinoma. Trop J Nat Prod Res. 2024; 8(8):8081–8086. Available from: https://tjnpr.org/index.php/home/article/view/4603