Modulatory Effects of Some Selected Functional Foods on Physiological and Biochemical Indices of Testosterone-Dimethylbenzen(a)anthracene (DMBA)-Induced Prostate Cancer in Rats
DOI:
https://doi.org/10.26538/tjnpr/v9i10.67Keywords:
Flutamide, phytochemicals, DMBA, Clove, watermelon, Papaya, functional foods, Prostate cancerAbstract
Prostate cancer remains a health concern globally, with emerging interest in functional foods as potential therapeutic interventions. Benzyl isothiocyanate, citrulline, and eugenol, found in Papaya, watermelon, and cloves, respectively, have demonstrated anticancer properties. This study investigated the modulatory effects of selected functional foods (papaya seeds, watermelon seeds, and clove) on physiological and biochemical parameters in testosterone-DMBA-induced prostate cancer in Wistar rats. Seventy male Wistar rats (8-10 weeks), were randomly divided into seven groups (n=10): normal control, induced control, combination diet containing 2% of the combined supplements, individual supplements (4% papaya seeds, 4% watermelon seeds, 2% clove), and flutamide treatment. Prostate cancer was induced with testosterone (3 mg/kg) and DMBA (65 mg/kg). Animals were fed supplemented diets, and various parameters were assessed. The combination diet group (Group 3) showed significantly higher feed intake (158.15±13.09 g vs. 88.36-111.48 g in the other induced groups) and demonstrated the lowest final body weight (146.1±10.67 g), with a 54.60% weight increase. It exhibited significantly elevated organ-to-body weight ratios, particularly in the liver (6.38±0.22×10-³), kidney (1.26±0.17×10⁻³), spleen (1.39±0.07×10⁻³). Group 3 showed the lowest ALT levels (5.00±2.31 µ/L), however, with elevated urea (348.33±142.14 mg/dL) and the highest creatinine levels (1.30±0.20 meq/L). Watermelon supplementation resulted in significantly higher HDL (21.67±4.41 mg/dL). The findings suggest that dietary interventions using phytochemical-rich foods may be beneficial in managing prostate cancer. HDL improvement in the watermelon group aligns with antioxidant properties of flavonoids, which may counteract cancer-associated oxidative stress. Flutamide provided a baseline for efficacy but lacked the multi-targeted phytochemical benefits.
References
1.Rawla P. Epidemiology of prostate cancer. World J. Oncol. 2019; 10(2):63. Doi: 10.14740/wjon1191
2.World cancer research fund. Prostate cancer statistics [Internet]. [Accessed 2024 Dec 20]. Available from: https://www.wcrf.org/preventing-cancer/cancer-statistics/prostate-cancer-statistics/
3.Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide. CA: Cancer J. Clin. 2024; 74(3):229-263. Doi: 10.3322/caac.21834
4.Centers for disease control and prevention. Prostate cancer [Internet]. United States Cancer Statistics; [Accessed 2024 Dec 20]. Available from: https://www.cdc.gov/united-states-cancer-statistics/publications/prostate-cancer.html
5.World Health Organization. Cancer today [Internet]. Global health observatory; [Accessed 2024 Dec 20]. Available from: http://gco.iarc.fr/today/home
6.Sharma R, Nanda M, Fronterre C, Sewagudde P, Ssentongo AE, Yenney K, Arhin ND, Oh J, Amponsah-Manu F, Ssentongo P. Comprehensive characterization of 34 cancer types in Africa using GLOBOCAN 2020 estimates. Front Public Health. 2022; 10:839835. Doi: 10.3389/fpubh.2022.839835
7.International agency for research on cancer. Cancer screening in five continents [Internet]. Country factsheet: Nigeria [Accessed 2024 Dec 20]. Available from: https://canscreen5.iarc.fr/?page=countryfactsheet&q=NGA
8.Bunani N, Kisakye AN, Ssennyonjo A, Nuwaha F. Late diagnosis of prostate cancer at the Uganda Cancer Institute: a retrospective cohort study. Afr Health Sci. 2024; 24(3):147-155. Doi: 10.4314/ahs.v24i3.19
9.Waihenya C, Thumbi SM, Ojuka DK, Ragin C, Zeigler-Johnson C. Barriers and facilitators to prostate cancer screening, early presentation, and diagnosis: experiences of men diagnosed with prostate cancer in Kenya. Front Cancer Control Soc. 2025; 3:1521454. Doi: 10.3389/fcacs.2025.1521454
10.Seraphin TP, Joko-Fru WY, Manraj SS, Chokunonga E, Somdyala NI, Korir A, N'Da G, Finesse A, Wabinga H, Assefa M, Gnangnon F. Prostate cancer survival in sub-Saharan Africa by age, stage at diagnosis, and human development index: a population-based registry study. Cancer Causes Control. 2021; 32:1001-19. Doi: 10.1007/s10552-021-01453-x
11.Cai C, Balk SP. Role of intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy. Endocr Relat Cancer. 2011; 18(5):R175-R182. Doi: 10.1530/ERC-10-0339
12.Nacusi LP, Tindall DJ. Targeting 5α-reductase for prostate cancer prevention and treatment. Nat Rev Urol. 2011; 8(7):378-384. Doi: 10.1038/nrurol.2011.67
13.Tan MH, Li J, Xu HE, Melcher K, Yong EL. Structure and role of the androgen receptor in prostate cancer and drug discovery. Acta Pharmacologica Sinica. 2015; 36(1):3-23. Doi: 10.1038/aps.2014.18
14.Kaipainen A, Zhang A, Gil da Costa RM, Lucas J, Marck B, Matsumoto AM, Morrissey C, True LD, Mostaghel EA, Nelson PS. Enhanced testosterone accumulation in prostate cancer cells through facilitated diffusion. Prostate. 2019; 79(13):1530-1542. Doi: 10.1002/pros.23874
15.Fujita K, Nonomura N. Role of the androgen receptor in prostate cancer: a review. World J. Mens Health. 2019; 37(3). Doi: 10.5534/wjmh.180040
16.Michmerhuizen AR, Spratt DE, Pierce LJ, Speers CW. Understanding androgen receptor signalling in breast cancer. NPJ Breast Cancer. 2020; 6(1):47. Doi: 10.1038/s41523-020-00190-9
17.Culig Z, Santer FR. Androgen receptor signalling in prostate cancer. Cancer Metastasis Rev. 2014; 33:413-427. Doi: 10.1007/s10555-013-9474-0
18.Zhu ML, Kyprianou N. Cross-talk between androgen receptor and growth factor signalling in prostate cancer cells. Endocr Relat Cancer. 2008; 15(4):841-849. Doi: 10.1677/ERC-08-0084
19.Balk SP, Knudsen KE. Androgen receptor, the cell cycle, and prostate cancer. Nucl Recept Signal. 2008; 6(1):nrs-06001. Doi: 10.1621/nrs.06001
20.Mosquera JM, Perner S, Demichelis F, Kim R, Hofer MD, Mertz KD, Paris PL, Simko J, Collins C, Bismar TA, Chinnaiyan AM. Morphological features of prostate cancer with TMPRSS2-ERG gene fusion. J. Pathol. 2007; 212(1):91-101. Doi: doi.org/10.1002/path.2154
21.Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH, Yang LY, Stanimirovic A, Encioiu E, Neill M, Loblaw DA, Trachtenberg J. Prediction of cancer recurrence by TMPRSS2:ERG fusion gene expression in localized prostate cancer after surgery. Br J. Cancer. 2007; 97(12):1690-1695. Doi: doi.org/10.1038/sj.bjc.6604054
22.St John J, Powell K, Conley-LaComb MK, Chinni SR. Clinical and biological significance of TMPRSS2-ERG fusion gene expression in prostate cancer progression. J. Cancer Sci Ther. 2012; 4(4):94. Doi: 10.4172/1948-5956.1000119
23.Li C, Cheng D, Li P. Dynamics of the androgen receptor in prostate cancer: from disease progression to treatment resistance. Front Oncol. 2025; 15:1542811. Doi: 10.3389/fonc.2025.1542811
24.Westaby D, Fenor de La Maza MD, Paschalis A, Jimenez-Vacas JM, Welti J, de Bono J, Sharp A. Androgen receptor signalling: an old but persistent target in advanced prostate cancer. Annu Rev Pharmacol Toxicol. 2022; 62(1):131-153. Doi: 10.1146/annurev-pharmtox-052220-015912
25.Coutinho I, Day TK, Tilley WD, Selth LA. Persistence of androgen receptor signalling in castration-resistant prostate cancer. Endocr Relat Cancer. 2016; 23(12):T179-T197. Doi: doi.org/10.1530/ERC-16-0422
26.Karantanos T, Corn PG, Thompson TC. Mechanisms of castrate resistance and novel therapeutic approaches in prostate cancer progression after androgen deprivation therapy. Oncogene. 2013; 32(49):5501-5511. Doi: 10.1038/onc.2013.206
27.Kahn B, Collazo J, Kyprianou N. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int J. Biol Sci. 2014; 10(6):588-595. Doi: doi.org/10.7150/ijbs.8671
28.Jernberg E, Bergh A, Wikström P. Clinical Relevance of androgen receptor alterations in prostate cancer. Endocr Connect. 2017; 6(8):R146-R161. Doi: doi.org/10.1530/EC-17-0118
29.McCrea E, Sissung TM, Price DK, Chau CH, Figg WD. Impact of androgen receptor variation on prostate cancer progression and drug resistance. Pharmacol Res. 2016; 114:152-162. Doi: 10.1016/j.phrs.2016.10.001
30.Kallio HM, Hieta R, Latonen L, Brofeldt A, Annala M, Kivinummi K, Tammela TL, Nykter M, Isaacs WB, Lilja HG, Bova GS. Co-expression of constitutively active androgen receptor splice variants AR-V3, AR-V7, and AR-V9 in castration-resistant prostate cancer metastases. Br J. Cancer. 2018; 119(3):347-356. Doi: 10.1038/s41416-018-0172-0
31.Tu H, Gu J, Meng QH, Kim J, Strom S, Davis JW, He Y, Wagar EA, Thompson TC, Logothetis CJ, Wu X. Association of low serum testosterone with tumour aggressiveness and poor prognosis in prostate cancer. Oncol Lett. 2017; 13(3):1949-1957. Doi: doi.org/10.3892/ol.2017.5616
32.Cabral PH, Iwamoto MW, Fanni VS, Barros LD, Cardoso SN, Mello LF, Glina S. Testosterone as a predictor of tumour aggressiveness in prostate cancer patients. Int Braz J. Urol. 2013; 39(2):173-181. Doi: 10.1590/S1677-5538.IBJU.2013.02.04
33.Al-Asady AM, Ghaleb IK. Influence of the carcinogenic substance (7,12-Dimethylbenz[a]anthracene (DMBA)) on tissue, haematology character, and enzyme activity in rats. Indian J. Forensic Med Toxicol. 2020; 14(1):1255-1259. Doi: 10.37506/v14/i1/2020/ijfmt/193082
34.Naruse M, Ishigamori R, Imai T. Genetic and histological characteristics of DMBA-induced mammary tumors in an organoid-based carcinogenesis model. Front Genet. 2021; 12:765131. Doi: 10.3389/fgene.2021.765131
35.Kong YR, Jong YX, Balakrishnan M, Bok ZK, Weng JK, Tay KC, Goh BH, Ong YS, Chan KG, Lee LH, Khaw KY. Beneficial effects of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biology. 2021; 10(4):287. Doi: 10.3390/biology10040287
36.Ayubi N, Syafawi A, Padmasari DF, Putri DR, Komaini A, Yulfadinata A, Callixte C, Aljunaid M, Wibawa JC. Antioxidant and anti-inflammatory properties of watermelon (Citrullus lanatus) have the potential to reduce oxidative stress and inflammation after exercise/physical activity: systematic review. Retos. 2024; 55:20-26. Doi: 10.47197/retos.v55.103029
37.Crowe-White KM, Nagabooshanam VA, Dudenbostel T, Locher JL, Chavers TP, Ellis AC. 100% watermelon juice as a food-first intervention to improve cognitive function: ancillary findings from a randomized controlled trial. J. Nutr Gerontol Geriatr. 2021; 40(4):304-12. Doi: 10.1080/21551197.2021.1988028
38.Pramod K, Ansari SH, Ali J. Versatile pharmacological actions of eugenol, a natural compound. Nat Prod Commun. 2010; 5(12):1934578X1000501236. Doi: 10.1177/1934578X1000501236
39.Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological properties and health benefits of eugenol: a comprehensive review. Oxidative Med Cell Longev. 2021; 2021:2497354. Doi: 10.1155/2021/2497354
40.Idoko AS, Abdullahi A, Maibulangu BM, Nura L, Imam NU, Bonomi ZM, Muhammed F, Umar S. Protective Effects of Allium sativum and Curcuma longa powder against hepatotoxic and nephrotoxic effects of a high fructose diet. FUOYE J. Pure Appl Sci. 2022; 7(8):60. Doi: 10.55518/fjpas.JGKT1690
41.Bosland MC, Schlicht MJ, Horton L, McCormick DL. The MNU plus testosterone rat model of prostate carcinogenesis. J. Toxicol Pathol. 2022; 50(4):478-496. Doi: 10.1177/01926233221096345
42.Ibrahim AY, Mahmoud MG, Asker MS, Youness ER, El-Newary SA. Attenuation of testosterone-dmba-induced prostate cancer in rats by acidic exopolysaccharide from Bacillus sp. nrc5: inhibition of 5α-reductase and Na+/K+ ATPase activity. Curr Microbiol. 2023; 80(1):8. Doi: 10.1007/s00284-022-03098-8
43.Dacie JV, Lewis SM. Practical haematology. 7th ed. New York: Churchill Livingstone; 1991. pp 50-56.
44.Friedewald WT, Levy RI, Fredrickson DS. Estimation of low-density lipoprotein cholesterol concentration in plasma without preparative ultracentrifugation. Clin Chem. 1972; 19:449-452. Doi: 10.1093/clinchem/18.6.499
45.Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M. Anticancer efficacy of polyphenols and their combinations. Nutrients. 2016;8(9):552. Doi: 10.3390/nu8090552
46.Wang S, Zhu F, Kakuda Y. Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food Chem. 2018;265:316-328. Doi: 10.1016/j.foodchem.2018.05.055
47.Hon KW, Naidu R. Synergistic mechanisms of selected polyphenols in overcoming chemoresistance and enhancing chemosensitivity in colorectal cancer. Antioxidants. 2024;13(7):815. Doi: 10.3390/antiox13070815
48.Kubczak M, Szustka A, Rogalińska M. Molecular targets of natural compounds with anticancer properties. Int J. Mol Sci. 2021;22(24):13659. Doi: 10.3390/ijms222413659
49.Yadav NK, Sharma SK, Meena DK. Exogenous papain supplementation: impacts on growth, digestibility, digestive enzyme activities and oxidative stress in Labeo rohita fingerlings. Aquac Sci Manag. 2024;1(1):1. Doi: 10.1186/s44365-024-00002-2
50.Ulanowska M, Olas B. Biological properties and prospects for the application of eugenol—a review. Int J. Mol Sci. 2021;22(7):3671. Doi: 10.3390/ijms22073671
51.Lao Y, Guo J, Fang J, Geng R, Li M, Qin Y, Wu J, Kang SG, Huang K, Tong T. Beyond flavor: the versatile roles of eugenol in health and disease. Food Funct. 2024;15(21):10567-10581. Doi: 10.1039/D4FO02428A
52.Muscolo A, Mariateresa O, Giulio T, Mariateresa R. Oxidative stress: the role of antioxidant phytochemicals in the prevention and treatment of diseases. Int J. Mol Sci. 2024;25(6):3264. Doi: 10.3390/ijms25063264
53.El-Nekeety, A. A.; Abdel-Wahhab, K. G.; Abdel-Aziem, S. H.; Mannaa, F. A.; Hassan, N. S.; Abdel-Wahhab, M. A. Papaya fruit extracts enhance the antioxidant capacity and modulate the genotoxicity and oxidative stress in the kidney of rats fed ochratoxin A-contaminated diet. J. App Pharm Sci. 2017, 7(7):111–121. Doi: 10.7324/JAPS.2017.70718
54.Wang Y, Liu Z, Ma J, Xu Q, Gao H, Yin H Yu, W. Lycopene attenuates the inflammation and apoptosis in aristolochic acid nephropathy by targeting the Nrf2 antioxidant system. Redox Biol. 2022, 57:102494. Doi: 10.1016/j.redox.2022.102494
55.Albadrani GM, Altyar AE, Kensara OA, Haridy MA, Sayed AA, Mohammedsaleh ZM, Abdel-Daim MM. Lycopene alleviates 5-fluorouracil-induced nephrotoxicity by modulating PPAR-γ, Nrf2/HO-1, and NF-κB/TNF-α/IL-6 signals. Ren Fail. 2024, 46(2):2423843. Doi: 10.1080/0886022X.2024.2423843
56.Pan X, Zhu R, Pei J, Zhang L. Lycopene: A potent antioxidant to alleviate kidney disease. Int Immunopharmacol. 2025; 151:114363. Doi: 10.1016/j.intimp.2025.114363
57.Damasceno RO, Pinheiro JL, Rodrigues LH, Gomes RC, Duarte AB, Emídio JJ, Diniz LR, de Sousa DP. Anti-Inflammatory and Antioxidant Activities of Eugenol: An Update. Pharmaceuticals. 2024; 17(11):1505. Doi: 10.3390/ph17111505
58.Barboza JN, da Silva Maia Bezerra Filho C, Silva RO, Medeiros JVR, de Sousa DP. An overview on the anti-inflammatory potential and antioxidant profile of eugenol. Oxid Med Cell Longev. 2018; 2018(1):3957262. Doi: 10.1155/2018/3957262
59.Rigney N, de Vries GJ, Petrulis A. Modulation of social behavior by distinct vasopressin sources. Front Endocrinol. 2023; 14:1127792. Doi: 10.3389/fendo.2023.1127792
60.Talib WH, Awajan D, Hamed RA, Azzam AO, Mahmod AI, Al-Yasari IH. Combination anticancer therapies using selected phytochemicals. Molecules. 2022; 27(17):5452. Doi: 10.3390/molecules27175452
61.Gandhi S, Oshi M, Murthy V, Repasky EA, Takabe K. Enhanced thermogenesis in triple-negative breast cancer is associated with pro-tumor immune microenvironment. Cancers. 2021; 13(11):2559. Doi: 10.3390/cancers13112559
62.Manivannan A, Lee ES, Han K, Lee HE, Kim DS. Versatile nutraceutical potentials of watermelon—A modest fruit loaded with pharmaceutically valuable phytochemicals. Molecules. 2020; 25(22):5258. Doi: 10.3390/molecules25225258
63.Ulanowska M, Olas B. Biological properties and prospects for the application of eugenol—a review. Int J. Mol Sci. 2021; 22(7):3671. Doi: 10.3390/ijms22073671
64.Gómez-Garduño J, León-Rodríguez R, Alemón-Medina R, Pérez-Guillé BE, Soriano-Rosales RE, González-Ortiz A, Chávez-Pacheco JL, Solorio-López E, Fernandez-Pérez P, Rivera-Espinosa L. Phytochemicals that interfere with drug metabolism and transport, modifying plasma concentration in humans and animals. Dose Response. 2022; 20(3):15593258221120485. Doi: 10.1177/15593258221120485
65.Bolhassani A. Bioactive components of saffron and their pharmacological properties. Stud Nat Prod Chem. 2018; 58:289–311. Doi: 10.1016/B978-0-444-64056-7.00010-6
66.Budisan L, Gulei D, Zanoaga OM, Irimie AI, Chira S, Braicu C, Gherman CD, Berindan-Neagoe I. Dietary intervention by phytochemicals and their role in modulating coding and non-coding genes in cancer. Int J. Mol Sci. 2017; 18(6):1178. Doi: 10.3390/ijms18061178
67.Ahmed MB, Islam SU, Alghamdi AA, Kamran M, Ahsan H, Lee YS. Role of phytochemicals as chemopreventive agents and signaling molecule modulators in cancer therapeutics and inflammation. Int J. Mol Sci. 2022; 23(24):15765. Doi: 10.3390/ijms232415765
68.Ahmed D, Abdel-Shafy EA, Mohammed EAA, Alnour HEAB, Ismail AM, Cacciatore S, Zerbini LF. Altered amino and fatty acids metabolism in Sudanese prostate cancer patients: insights from metabolic analysis. J. Circ Biomark. 2024; 13:36. Doi; 10.33393/jcb.2024.3146
69.McEneny J, Henry SL, Woodside J, Moir S, Rudd A, Vaughan N, Thies F. Effect of lycopene-rich diets on HDL functionality and inflammatory markers in moderately overweight adults. Front Nutr. 2022; 9:954593. Doi: 10.3389/fnut.2022.954593
70.Xue Z, Wang R, Yu W, Kou X. Cholesterol-lowering mechanisms of phytochemicals: a review. Curr Top Nutraceutical Res. 2017; 15(3-4): 111-122.
71.Zhang Y, Ma KL, Ruan XZ, Liu BC. Involvement of the low-density lipoprotein receptor pathway dysregulation in lipid disorder-mediated organ injury. Int J. Biol Sci. 2016; 12(5):569-579. Doi: doi.org/10.7150/ijbs.14027
72.Arvindekar SA, Rathod S, Choudhari PB, Mane PK, Arvindekar AU, Mali SN, Thorat B. Computational studies and structural insights for the discovery of potential natural aromatase modulators in hormone-dependent breast cancer. BioImpacts. 2024; 14(5):27783. Doi: 10.34172/bi.2024.27783
73.Balunas MJ, Su B, Brueggemeier RW, Kinghorn AD. Natural products as aromatase inhibitors. Anticancer Agents Med Chem. 2008; 8(6):646-682. Doi: 10.2174/187152008785133092
74.Ibrahim IM, Althagafy HS, Abd-Alhameed EK, Al-Thubiani WS, Hassanein EH. Hepatoprotective effects of lycopene in various liver diseases. Life Sci. 2022; 310:121131. Doi: 10.1016/j.lfs.2022.121131
75.Zhang J, Pavek P, Kamaraj R, Ren L, Zhang T. Modulation of human pregnane x receptor by dietary phytochemicals. Crit Rev Food Sci. Nutr. 2023; 63(19):3279-3301. Doi: 10.1080/10408398.2021.1995322
76.Shannar A, Sarwar MS, Kong ANT. Metabolic and epigenetic reprogramming by dietary phytochemicals in cancer and health. Prev Nutr Food Sci. 2022; 27(4):335. Doi: 10.3746/pnf.2022.27.4.335
77.Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Targeting of multiple metabolic pathways in cancer by phytochemicals. Antioxidants. 2023; 12(11):2012. Doi: 10.3390/antiox12112012
78.Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett. 2013; 334(1):133-141. Doi: 10.1016/j.canlet.2013.02.032
79.Rizeq B, Gupta I, Ilesanmi J, AlSafran M, Rahman MM, Ouhtit A. Chemopreventive effects of phytochemical combinations in cancer. J. Cancer. 2020; 11(15):4521. Doi: 10.7150/jca.34374
80.Vaou N, Stavropoulou E, Voidarou CC, Tsakris Z, Rozos G, Tsigalou C, Bezirtzoglou E. Antimicrobial combination effects of bioactive compounds derived from medical plants. Antibiotics. 2022; 11(8):1014. Doi: 10.3390/antibiotics11081014
81.Nicolescu A, Babotă M, Barros L, Rocchetti G, Lucini L, Tanase C, Mocan A, Bunea CI, Crișan G. Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Front Nutr. 2023; 10:1184535. Doi: 10.3389/fnut.2023.1184535
82.Ávila M, Mora Sánchez MG, Bernal Amador AS, Paniagua R. Metabolism of creatinine and its clinical utility in evaluating kidney function and body composition. Biomolecules. 2025; 15(1):41. Doi: 10.3390/biom15010041
83.Bedir F, Kocaturk H, Turangezli O, Sener E, Akyuz S, Ozgeris FB, Dabanlioglu BÜ, Suleyman H, Altuner D, Suleyman B. The protective effect of lycopene against oxidative kidney damage associated with combined use of isoniazid and rifampicin in rats. Braz J. Med Biol Res. 2021; 54:e10660. Doi: 10.1590/1414-431x2020e10660
84.Gao X, Lin B, Chen C, Fang Z, Yang J, Wu S, Chen Q, Zheng K, Yu Z, Li Y, Gao X. Lycopene from tomatoes and tomato products exerts renoprotective effects by ameliorating oxidative stress, apoptosis, pyroptosis, fibrosis, and inflammatory injury in calcium oxalate nephrolithiasis: the underlying mechanisms. Food Funct. 2024; 15(8):4021-4036. Doi: 10.1039/D4FO00042K
85.Zhong Q, Piao Y, Yin S, Zhang K. Association of serum lycopene concentrations with all-cause and cardiovascular mortality in individuals with chronic kidney disease. Front in Nutr. 2022; 9:1048884. Doi: 10.3389/fnut.2022.1048884
86.Bruno CM, Pricoco G, Cantone D, Marino E, Bruno F. Tubular handling of uric acid and factors influencing its renal excretion: a short review. EMJ Nephrol. 2016;4(1):92-7. Doi: 10.33590/emjnephrol/10311174
87.Xu L, Shi Y, Zhuang S, Liu N. Recent advances in uric acid transporters. Oncotarget. 2017; 8(59):100852. Doi: 10.18632/oncotarget.20135
88.Jung SW, Kim SM, Kim YG, Lee SH, Moon JY. Role of uric acid and inflammation in kidney disease. Am. J. Physiol. - Ren. Physiol. 2020; 318:F1327–F1340. Doi: 10.1152/ajprenal.00272.2019
89.Sun HL, Wu YW, Bian HG, Yang H, Wang H, Meng XM, Jin J. Role of uric acid transporters and their inhibitors in hyperuricemia. Front Pharmacol. 2021; 12:667753. Doi: 10.3389/fphar.2021.667753
Published
Issue
Section
License
Copyright (c) 2025 Tropical Journal of Natural Product Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.





