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					ABSTRACT  

					ARTICLE INFO  

					Prostate cancer remains a health concern globally, with emerging interest in functional foods as  

					potential therapeutic interventions. Benzyl isothiocyanate, citrulline, and eugenol, found in  

					Papaya, watermelon, and cloves, respectively, have demonstrated anticancer properties. This  

					study investigated the modulatory effects of selected functional foods (papaya seeds, watermelon  

					seeds, and clove) on physiological and biochemical parameters in testosterone-DMBA-induced  

					prostate cancer in Wistar rats. Seventy male Wistar rats (8-10 weeks), were randomly divided into  

					seven groups (n=10): normal control, induced control, combination diet containing 2% of the  

					combined supplements, individual supplements (4% papaya seeds, 4% watermelon seeds, 2%  

					clove), and flutamide treatment. Prostate cancer was induced with testosterone (3 mg/kg) and  

					DMBA (65 mg/kg). Animals were fed supplemented diets, and various parameters were assessed.  

					The combination diet group (Group 3) showed significantly higher feed intake (158.15±13.09 g  

					vs. 88.36-111.48 g in the other induced groups) and demonstrated the lowest final body weight  

					(146.1±10.67 g), with a 54.60% weight increase. It exhibited significantly elevated organ-to-body  

					weight ratios, particularly in the liver (6.38±0.22×10-³), kidney (1.26±0.17×10⁻³), spleen  

					(1.39±0.07×10⁻³). Group 3 showed the lowest ALT levels (5.00±2.31 µ/L), however, with  

					elevated urea (348.33±142.14 mg/dL) and the highest creatinine levels (1.30±0.20 meq/L).  

					Watermelon supplementation resulted in significantly higher HDL (21.67±4.41 mg/dL). The  

					findings suggest that dietary interventions using phytochemical-rich foods may be beneficial in  

					managing prostate cancer. HDL improvement in the watermelon group aligns with antioxidant  

					properties of flavonoids, which may counteract cancer-associated oxidative stress. Flutamide  

					provided a baseline for efficacy but lacked the multi-targeted phytochemical benefits.  
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					Testosterone is crucial in the pathophysiology of prostate cancer via  

					various interrelated processes. The enzyme 5α-reductase transforms  

					Introduction  

					Prostate cancer (PC) represents a significant global health  

					burden, ranking as the second most common cancer in men and fourth  

					most prevalent overall.1 In 2022, approximately 1.47 million new cases  

					were diagnosed worldwide, accounting for 7.3% of all cancer cases,  

					with 397,430 associated deaths.2,3 Incidence rates vary considerably by  

					region, with high rates in the United States (112 per 100,000 men) and  

					France (82.3 per 100,000).4,5 In Africa, PC poses a growing challenge  

					with 93,173 new cases recorded in 2020, Nigeria showing one of the  

					highest mortality rates at 27.9 per 100,000 men.6,7 This elevated  

					mortality in developing regions stems from late diagnosis, limited  

					testosterone, the main circulating androgen, into dihydrotestosterone  

					(DHT) when it enters prostate cells. Compared to testosterone, DHT has  

					around five times the same affinity for the androgen receptor (AR).  

					Upon binding, DHT-AR complexes translocate to the nucleus, where  

					they interact with androgen response elements (AREs) in DNA,  

					recruiting coactivators and initiating the transcription of genes that  

					regulate cell proliferation, survival, and differentiation.11-16 Prostate  

					epithelial cell proliferation is stimulated by this testosterone signalling  

					system, which may also encourage neoplastic transformation in some  

					circumstances. The AR signalling axis influences numerous cellular  

					processes involved in carcinogenesis, including cell cycle progression  

					through the regulation of cyclin-dependent kinases, the expression of  

					anti-apoptotic proteins, and growth factor signalling pathways.  

					Additionally, testosterone stimulation can induce chromosomal  

					rearrangements, particularly TMPRSS2-ERG gene fusions, which are  

					found in approximately 50% of prostate cancers and contribute to  

					disease progression.17-22 In established prostate tumours, persistent AR  

					signalling drives cancer cell proliferation and survival, even in  

					advanced disease states.23-26 The cornerstone of treatment for advanced  

					prostate cancer, androgen deprivation therapy (ADT), is based on this  

					biological reliance. However, most tumours eventually develop  

					resistance to ADT through various mechanisms, including AR  

					amplification, AR mutations that allow activation by non-androgen  

					ligands, and constitutively active AR splice variants that function  

					without ligand binding.23-30 The relationship between testosterone and  

					prostate cancer is further complicated by observations that both very  

					8, 9, 10  

					treatment access, and insufficient awareness of prostate health.  

					These disparities between developed and developing nations  

					underscore the urgent need for context-specific screening and  

					intervention strategies.  
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					low and high testosterone levels can be associated with aggressive  

					disease, suggesting a non-linear relationship that challenges the  

					traditional linear model of androgen action in prostate  

					carcinogenesis.31,32 The carcinogenic effects of DMBA further  

					complicate this relationship; DMBA is known to induce DNA damage  

					leading to mutations that promote tumorigenesis.33,34 Given these  

					complexities, interest is rising in exploring dietary interventions that  

					may mitigate the effects of prostate cancer. The abundance of bioactive  

					chemicals in natural products including papaya seeds, watermelon  

					seeds, and clove buds has drawn attention to their possible health  

					advantages. Papaya is recognised for its antioxidant properties and  

					ability to boost immune function due to its high levels of vitamins C  

					and E, carotenoids, and enzymes such as papain.35 Watermelon contains  

					lycopene, which has been associated with reduced oxidative stress and  

					inflammation in various studies.36,37 Clove is recognised for its eugenol  

					content, which exhibits potent anti-inflammatory and analgesic  

					properties.38,39  

					This study represents a comprehensive investigation into the  

					combined effects of papaya seeds, watermelon seeds, and clove buds on  

					physiological, haematological, and toxicological parameters in a  

					testosterone-DMBA-induced prostate cancer model. While previous  

					research has examined these natural products individually for various  

					health conditions, our work uniquely explores their specific modulatory  

					effects on prostate cancer-associated metabolic disturbances. This  

					approach is particularly novel in addressing the growing burden of  

					prostate cancer in resource-limited settings such as parts of Africa,  

					where accessible dietary interventions could significantly impact  

					patient management strategies by examining multiple physiological  

					systems simultaneously, including liver function, kidney function, lipid  

					metabolism, and haematological parameters. This research provides a  

					holistic understanding of how these plant-based supplements interact  

					with prostate cancer pathophysiology, filling a critical gap in the current  

					literature on complementary approaches to prostate cancer  

					management.  

					The methodology employed in this study aligns with its  

					translational objectives by utilising a clinically relevant animal model  

					that mirrors the complex pathophysiology of human prostate cancer.  

					The testosterone-DMBA induction method accurately simulates the  

					hormonal and carcinogenic factors involved in human prostate  

					carcinogenesis, allowing for meaningful extrapolation to clinical  

					scenarios. Our selection of physiological, hematological, and  

					toxicological markers provides comprehensive insights into systemic  

					responses to both cancer progression and dietary interventions, which  

					are essential for understanding the holistic impact of these natural  

					products. The percentage-based dietary supplementation approach (4%  

					for papaya and watermelon seeds, 2% for Cloves) facilitates the  

					practical translation of human nutritional recommendations, as these  

					levels approximate achievable nutritional modifications. Additionally,  

					our focus on commonly available natural products addresses the urgent  

					need for accessible interventions in resource-limited settings, where  

					conventional cancer treatments may be prohibitively expensive or  

					unavailable. This makes our methodological approach particularly  

					relevant to global health priorities in prostate cancer management.  

					This study aimed to investigate the modulatory role of these  

					natural products on physiological, haematological, and toxicological  

					markers in a rat model of testosterone-DMBA-induced prostate cancer.  

					As prostate cancer continues to pose a significant health burden  

					globally, especially in regions like Africa where resources are limited,  

					there is an urgent need for innovative strategies that leverage dietary  

					interventions to improve patient outcomes and quality of life. This  

					research aims to contribute to this critical area by investigating the  

					potential benefits of Papaya, watermelon, and Cloves in managing  

					prostate cancer-related physiological changes.  

					dimethylbenz[a]anthracene (DMBA) (CAS 57-97-6, 95% purity), and  

					Testosterone (CAS 58-22-0, ≥98% purity) were obtained from Beijing  

					Solarbio Science & Technology Co., Ltd, Tongzhou Dist, Beijing,  

					China. Chloroform (analytical grade, 99.8% purity) used for euthanasia  

					was purchased from Sigma-Aldrich (St. Louis, MO, USA). All lipid  

					analyses were performed on the Randox RX Daytona automated  

					biochemistry analyser, with each sample analysed individually. The  

					enzymatic colourimetric assay kits for ALT, AST, ALP, total protein,  

					albumin, total bilirubin, conjugated bilirubin, creatinine, uric acid, and  

					urea were obtained from Randox Laboratories Limited (Crumlin, UK).  

					All biochemical and hematological analyses were performed in  

					triplicate to ensure the reliability and reproducibility of the results. The  

					mean values of these replicate measurements were used for statistical  

					analysis and interpretation.  

					Equipment/Instrumentation  

					Blood collection was performed using BD Vacutainer® tubes (Becton,  

					Dickinson and Company, Franklin Lakes, NJ, USA). Centrifugation  

					was conducted using a Denley BS400 centrifuge (Denley Instruments  

					Ltd., UK) at 250 rpm for 10 minutes. Haematological parameters were  

					assessed using a Sysmex XE-2100 automated haematology analyser  

					(Sysmex Corporation, Kobe, Japan). Biochemical analyses were  

					performed using a Randox RX Daytona automated biochemistry  

					analyser (Randox Laboratories Limited, Crumlin, UK). Organ and body  

					weights were measured using a calibrated Mettler Toledo PB3002  

					analytical balance (Mettler Toledo, Columbus, OH, USA) with a  

					precision of 0.01 g. Feed ingredients were processed using a Waring  

					commercial laboratory blender (Model 8010S, Waring Commercial,  

					Torrington, CT, USA). Temperature and humidity were monitored  

					using a ThermoPro TP50 digital hygrometer (iTronics Inc., USA).  

					Feed  

					Corn starch was extracted through a multi-step process. Initially, dried  

					corn kernels were submerged in water for 48 hours to facilitate  

					rehydration. The soaked kernels were then pulverised into a uniform  

					consistency and passed through a 0.02 mm mesh cheesecloth,  

					separating the solid residue from the starch-rich filtrate. The filtrate was  

					allowed to settle for 2 hours, enabling phase separation. The supernatant  

					liquid was carefully decanted, leaving behind a concentrated starch  

					layer. This starch was dried thoroughly at ambient temperature and  

					subsequently milled into a fine, uniform powder. The necessary feed  

					components, including soya bean meal (SBM), pre-mix, salt mix,  

					cellulose, palm oil, methionine, and bone meal, were acquired from a  

					reputable local vendor in Kano, Nigeria.  

					Collection of Plant Material and Identification  

					Fresh specimens of Papaya, watermelon fruits including seeds, and  

					clove buds were procured from a local market in Dutsin-Ma (12.4672°  

					N, 7.4947° E), Katsina State, Nigeria, in July 2024. Subsequent  

					taxonomic identification and authentication were conducted by a  

					qualified botanist at the Plant Biology Department's Herbarium, Federal  

					University, Dutsin-Ma, Katsina State. Voucher specimens were  

					deposited with the following accession numbers: Papaya  

					FUDMA/PSB/00004, Watermelon FUDMA/PSB/00118, and Clove  

					FUDMA/PSB/00087. The collected papaya and watermelon fruits  

					underwent initial processing, during which they were washed,  

					dissected, and the seeds were carefully extracted. Seeds from Papaya,  

					watermelon, and Clove were then subjected to separate cleaning and  

					drying protocols. Seeds were dried for 72 hours in a well-ventilated  

					area, stirring multiple times to ensure uniform drying. Following  

					drying, the seeds were pulverised into fine powder using a laboratory-  

					grade blender. The resulting powders were sieved to achieve uniform  

					particle size and stored at room temperature for further analysis. This  

					meticulous processing ensured the preparation of high-quality seed  

					powders for subsequent experimentation.  

					Materials and Methods  

					Chemicals and reagents  

					All chemicals were of analytical grade and were obtained from trusted  

					Feed Formulation  

					A standardized rodent diet was formulated by combining the following  

					components in specific proportions: corn starch (554.5 g/kg), SBM (320  

					g/kg), methionine (2.5 g/kg), vitamin and mineral pre-mix (2.5 g/kg),  

					salt (2.5 g/kg), cellulose (45 g/kg), palm oil (60 g/kg), and bone meal  

					suppliers.  

					Flutamide  

					(CAS  

					13311-84-7,  

					≥99%  

					purity),  

					Carboxymethylcellulose (CAS 9004-32-4, analytical grade),  

					Testosterone propionate (CAS 57-85-2, ≥98% purity), 7,12-  
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					(12.5 g/kg). These ingredients were thoroughly mixed to create a  

					nutritionally balanced and homogeneous diet that adheres to established  

					rodent nutritional requirements.40  

					Measurement of Feed Intake, Water Intake, and Bodyweight  

					Daily feed and water consumption measurements were recorded to  

					assess the feeding patterns of the Wistar rats. Uneaten feed and spillage  

					were collected and weighed to calculate actual consumption. Water  

					intake was monitored using calibrated bottles. Concurrently, body  

					weight assessments were conducted weekly to monitor growth and  

					development, ensuring comprehensive tracking of animal health and  

					well-being throughout the experimental period.  

					Diet supplementation  

					A supplemented diet was formulated by thoroughly mixing 98 g of  

					standard rodent chow with 2 g of a proprietary blend consisting of  

					papaya seed powder, watermelon seed powder, and clove powder in a  

					ratio of 4:4:2, respectively. The 4:4:2 ratio balances therapeutic efficacy  

					with safety considerations, providing optimal exposure to bioactive  

					compounds while preventing eugenol-related toxicity associated with  

					excessive clove consumption.  

					Collection and Preparation of Sera Samples  

					Following the 16-week study period, rats were weighed and humanely  

					euthanised via chloroform inhalation. Blood samples were collected via  

					cardiac puncture and transferred to plastic red-top tubes for  

					centrifugation. After clotting, serum was separated through  

					centrifugation (Denley BS400, 250 rpm, 10 minutes). Subsequently,  

					organs of interest (prostate, lungs, liver, kidney, heart, and spleen) were  

					dissected, weighed, and organ-to-body weight ratios calculated.  

					Comparing organ-to-body weight ratios between treatment groups and  

					control groups provides insights into the effectiveness and safety of the  

					intervention. Serum samples underwent various biochemical analyses  

					to assess physiological changes. Haematological analysis provides a  

					baseline assessment of the overall health status of the animals before  

					and during treatment. This is crucial for identifying any pre-existing  

					conditions or vulnerabilities that could influence treatment outcomes or  

					be affected by the treatment itself. Serum lipid profile analysis was  

					performed to assess the impact of these interventions on lipid  

					metabolism and to determine whether they have beneficial or  

					detrimental effects on cardiovascular risk. Serum liver enzymes  

					analysis; prostate cancer and its treatments can influence metabolic  

					processes, potentially affecting liver function. Analysing liver enzymes  

					can provide insights into these metabolic changes and their impact on  

					liver health. Serum kidney function, as indicated by serum creatinine,  

					urea, and uric acid, is a key indicator of kidney function. Monitoring  

					these parameters enables the detection of kidney damage or  

					dysfunction, which can be caused by cancer itself or its treatments.  

					Experimental Animals  

					Seventy (70) male Wistar rats, aged 8-10 weeks, were procured from  

					the Ebonyi State University's Department of Biological Sciences  

					Animal House. Upon arrival, rats were housed in standard plastic cages  

					and acclimatised to laboratory conditions (temperature: 25°C, humidity:  

					50%) for two weeks. During this period, they received standard rodent  

					chow and water ad libitum, ensuring optimal health and well-being  

					before experimentation. All animal handling and experimental  

					procedures were conducted following and adhering to the ARRIVE  

					(Animal Research: Reporting of In Vivo Experiments) guidelines. The  

					samples were prepared in replicate. The study design and execution  

					complied with international ethical standards for animal  

					experimentation. Ethical approval was sought from the Animal Care  

					and Use Research Ethics Committee (ACUREC) at Bayero University,  

					Kano,  

					where  

					animal  

					use  

					protocol  

					number  

					(AUP):  

					BUK/ACUREC/CAP/PG46 was assigned.  

					Experimental Design  

					Following a two-week acclimation period, seventy male Wistar rats  

					were randomly divided into seven groups (n = 10) with comparable  

					average weights.  

					Grouping of Experimental Animals  

					Group 1:Normal control.  

					Assessment of Organ to Body Weight Ratio  

					Group 2:Induced animals + standard rodent chow.  

					Group 3: Induced animals + supplemented diet + 2% of combined  

					seeds (4% papaya seeds, 4% watermelon seeds, 2% clove).  

					Group 4:Induced animals + 4% of papaya seeds.  

					Group 5:Induced animals + 4% of watermelon seeds.  

					Group 6:Induced animals + 2% of clove bud.  

					Group 7:Induced animals + 10 mg of Flutamide.  

					The organ-to-body weight ratio for each group was calculated by  

					dividing the weight of each dissected organ (prostate, lungs, liver,  

					kidney, heart, and spleen) by the corresponding terminal body weight  

					of the rat and then multiplying by 100 to obtain a percentage, as shown  

					in equation (1).  

					Organ to body weight ratio = Weight of organ (mg) X 100  

					(1)  

					Weight of rat  

					The 4:4:2 ratios (Papaya: watermelon: clove) were selected based on  

					bioactive compound concentrations, safety thresholds, and synergistic  

					optimisation. Papaya and watermelon seeds were used in equal  

					proportions, at 4% each, to provide sufficient bioactive compounds for  

					anticancer activity while maintaining a therapeutic balance between  

					apoptotic and vascular mechanisms. Clove was limited to 2% due to  

					eugenol's high potency (9,000-15,000 mg/100 g) and potential toxicity,  

					ensuring levels remain below the World Health Organisation (WHO)  

					safety guidelines (2.5 mg/kg body weight), while still providing  

					antioxidant and anti-inflammatory support. The total 2%  

					supplementation maintains nutritional balance, feed palatability, and  

					normal consumption patterns without overwhelming metabolic  

					capacity, thereby creating an optimal formulation that maximises  

					therapeutic benefits while minimising adverse effects through careful  

					consideration of each component's bioactive profile and safety margins.  

					Haematological Analysis  

					An auto haematology analyser (XE-2100 by Sysmex Corporation) was  

					used to determine the haemoglobin concentration (Hb), red blood cell  

					count (RBC), total white blood cell count (WBC), lymphocytes,  

					Monocytes, eosinophils, and Packed cell volume (PCV).43  

					Lipid Profile Analysis  

					Estimation of Serum Lipid  

					Spectrophotometric analysis was performed on serum lipid profiles  

					using enzymatic colorimetric test kits (Randox RX Daytona).  

					Estimation of Serum Total Cholesterol (TC)  

					One thousand microlitres (1000 µL) of the reagent were given to each  

					sample and standard. Following mixing, the mixture was incubated at  

					20–25°C for 10 minutes. After 30 minutes, the absorbance of the  

					samples (A sample) and standards (A standard) was measured at a  

					wavelength of 546 nm in comparison to the reagent blank. All  

					determinations were performed in duplicate, and the mean values were  

					calculated for each sample. The concentration of total cholesterol (TC)  

					in the serum was expressed in mg/dL (equation 2).  

					Induction Protocol  

					Initially, flutamide (25 mg/kg) was given daily via gavage for 2 weeks.  

					Twenty-four hours after starting Flutamide, testosterone propionate  

					(100 mg/kg) was injected subcutaneously. This was followed by an  

					intraperitoneal injection of DMBA (65 mg/kg) 56 hours later. Finally,  

					testosterone (3 mg/kg) was administered subcutaneously every 48 hours  

					for 10 weeks, starting 1 week after DMBA induction.41-42  
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					TC concentration = A sample X concentration of standard (200mg/dL)  

					combined with 0.5 mL of the sample served as the blank (zero-time  

					assay). The mixture of substrate and sample was further incubated for  

					15 minutes at 37°C. Following incubation, the mixture was measured at  

					405 nm against the reference blank after 0.5 mL was added to 9.5 mL  

					of 0.085 N NaOH. The moles of p-nitrophenol produced by ALP  

					indicated its activity (equation 8). All determinations were performed  

					in duplicate, and the mean values were calculated for each sample.  

					A standard  

					(2)  

					Estimation of Serum Triacylglycerol (TAG)  

					All samples and standards were first treated with 1000 µL of the  

					reagent. The mixture was combined and then incubated at 20–25°C for  

					10 minutes. After 30 minutes, the absorbance of the samples (A sample)  

					and standards (A standard) at a wavelength of 546 nm was measured in  

					comparison to the blank. All determinations were performed in  

					duplicate, and the mean values were calculated for each sample. The  

					concentration of triacylglycerol in the serum was measured in  

					millimoles per litre (mmol/L) (equation 3).  

					ALP activity (U/L) = A/min x 2757  

					Estimation of Total Protein (TP)  

					(8)  

					Three test tubes—the blank, the standard, and the sample—were  

					pipetted with 1 mL of the biuret reagent. Test tubes were filled with  

					0.020 mL of distilled water, 0.02 mL of standard, and 0.02 mL of test  

					sample. After combining the contents, they were incubated at 25°C.  

					Equation 8 was used to compare the absorbances of the sample  

					(Asample) and standard (Astandard) to the reagent blank. Equation (9).  

					All determinations were performed in duplicate, and the mean values  

					were calculated for each sample.  

					Triacylglycerol (mg/dL) =  

					Absorbance of sample  

					Absorbance of standard  

					X concentration of standard (200mg/dL)  

					(3)  

					Estimation of Serum High-Density Lipoprotein Cholesterol (HDL-C)  

					After letting the mixture settle for ten minutes at room temperature, it  

					was centrifuged for ten minutes at 4000 rpm. HDL-C percentage was  

					detected in the supernatant. The HDL fraction's cholesterol content,  

					which was kept in the supernatant, was measured. All determinations  

					were performed in duplicate, and the mean values were calculated for  

					each sample. Equation (4)  

					Total Protein (g/dL) =  

					Absorbance of sample X concentration of standard 6g/dL)  

					Absorbance of standard  

					(9)  

					Estimation of Serum Albumin  

					HDL – C (mg/dL)  

					Three millilitres (3 mL) of BCG reagent were placed in three test tubes  

					designated blank, standard, and sample. The test sample, reference  

					reagent, and 0.01 mL of distilled water were then pipetted into the tubes.  

					For five minutes, the mixtures were incubated at 25°C. Following  

					incubation, the absorbance of the sample (Asample) and the standard  

					(Astandard) at 630 nm was measured using spectrophotometers in  

					comparison to the reagent blank (equation 10). All determinations were  

					performed in duplicate, and the mean values were calculated for each  

					sample.  

					= Absorbance of sample X concentration of standard (50mg/dL) X 2  

					Absorbance of standard  

					(4)  

					Estimation of Serum Low-Density Lipoprotein Cholesterol (LDL-C)  

					The serum level of LDL-C was measured according to protocol.44 And  

					calculated as in (equation 5)  

					LDL (mg/dL) = Total Cholesterol – HDL – Triglycerides  

					(5)  

					5

					Albumin (g/dL) =  

					Liver Function Analysis  

					Absorbance of sample  

					Absorbance of standard  

					X concentration of standard (4 g/dL)  

					Utilising enzymatic colorimetric assay kits from Randox Laboratories  

					Limited (Crumlin, UK), serum enzymes Alanine Aminotransferase  

					(ALT), Aspartate Aminotransferase (AST), and Alkaline Phosphatase  

					(ALP) were measured spectrophotometrically while following the  

					manufacturer's laboratory protocols.  

					(10)  

					Estimation of Total Bilirubin  

					Albumin-bound bilirubin is released when diazotised sulphuric acid and  

					coffee are used to measure total bilirubin levels. Serum. First, reagents  

					and equipment were used to estimate total bilirubin. Serum sample (0.2  

					mL) was pipetted into blank, standard, and sample test tubes. Next, we  

					filled each test tube with 2.5 mL of diazo reagent and allowed them to  

					sit at room temperature for 10 minutes. Following incubation, the  

					absorbance of the sample (Asample) and standard (Astandard) was  

					measured at 546 nm in relation to the reagent blank (equation 11). All  

					determinations were performed in duplicate, and the mean values were  

					calculated for each sample.  

					Estimation of Aspartate Aminotransferase (AST)  

					After adding 1.0 mL of a reagent—which includes enzyme, coenzyme,  

					and L-oxoglutarate to a test tube, 0.1 mL of the sample was added in  

					order to measure the concentration of Aspartate Amino Transferase  

					(AST). The solution was well mixed, and the absorbance was measured  

					at 340 nm. The absorbance readings were taken at 1-minute intervals  

					for 3 minutes. The change in absorbance per minute (ΔA/min) was  

					calculated by subtracting the final absorbance from the initial  

					absorbance and dividing by the time interval. Equation (6) All  

					determinations were performed in duplicate, and the mean values were  

					calculated for each sample.  

					Total Bilirubin (mg/dL) =  

					Absorbance of sample  

					Absorbance of standard  

					X concentration of standard (5mg/dL)  

					(11)  

					AST activity (U/L) = A/min x 1746  

					(6)  

					Kidney Function Analysis  

					A

					Randox Laboratories Limited (Crumlin, UK) automated  

					Estimation of Alanine Aminotransferase (ALT)  

					biochemistry analyser was used to measure the levels of serum  

					creatinine, uric acid, and urea in accordance with the manufacturer's  

					laboratory protocols.  

					ALT activity was measured by pipetting 1.0 mL of working reagent  

					(TRIS buffer, lactate dehydrogenase, L-alanine, NADH, and 2-  

					oxoglutarate) into a 37°C cuvette, gently mixing, and timing with a  

					stopwatch. The first absorbance reading was recorded after 1 minute,  

					and differences between absorbance readings at 1, 2, and 3 minutes  

					were recorded. Absorbance change per minute (∆A/min) was calculated  

					from the mean result (equation 7). All determinations were performed  

					in duplicate, and the mean values were calculated for each sample.  

					Estimation of Creatinine  

					To extract the serum from the blood cells, it was centrifuged. 1.0 mL of  

					alkaline picrate solution was added to 0.1 mL of serum that had been  

					pipetted into a test tube. To enable the reaction, the mixture was  

					incubated for five minutes at room temperature. A spectrophotometer  

					was used to test the sample's absorbance at 520 nm. A blank sample of  

					alkaline picrate solution was also evaluated in order to account for  

					background absorption (equation 12 and 13). All determinations were  

					performed in duplicate, and the mean values were calculated for each  

					sample.  

					ALT activity (U/L) = A/min x 3333  

					(7)  

					Estimation of Alkaline Phosphatase (ALP)  

					Three millilitres of the substrate solution were pre-incubated for fifteen  

					minutes at 37°C. 9.5 mL of 0.085 N NaOH in the substrate solution  
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					Table 1: Effect of Testosterone-DMBA-Induced Prostate Cancer in Wistar  

					rats on Feed Intake  

					Creatinine (mg/dL) =  

					Group  

					Feed intake (g)  

					151.76±3.99a  

					104.48±7.69b  

					158.15±13.09a  

					88.36±5.79b  

					94.25±8.79b  

					99.77±6.35b  

					111.48±7.90b  

					A of sample X Concentration of standard (2 mg/dL)  

					A of standard  

					(12)  

					(13)  

					1

					2

					3

					4

					5

					6

					7

					Creatinine (mEq/L) = Creatinine (mg/dL) X 10  

					113.12  

					x

					1

					Estimation of Urea  

					To extract the serum from the blood cells, it was centrifuged. 1.0 mL of  

					urease enzyme solution was added to a test tube containing 0.1 mL of  

					serum that had been pipetted there. At 37°C, the mixture was incubated  

					for ten minutes. After that, 1.0 mL of phenol and hypochlorite solutions  

					were added to the test tube. After thorough mixing, the mixture was  

					incubated for ten minutes. The test tube was then filled with 1.0 mL of  

					sodium hydroxide solution and carefully swirled. The absorbance of the  

					blue solution at 578 nm was measured using a spectrophotometer  

					(equation 14). All determinations were performed in duplicate, and the  

					mean values were calculated for each sample.  

					Values represent mean ± SEM. Values with identical superscripts do not  

					exhibit significant differences (P<0.05), while values with different  

					superscripts exhibit significant differences.  

					Lycopene from watermelon has demonstrated anti-inflammatory effects  

					through the inhibition of the NF-κB pathway,48 while Papaya's  

					enzymatic compounds improve protein digestion and nutrient  

					absorption.49 Eugenol in cloves provides antioxidant protection and  

					modulates taste perception.50,51 Together, these compounds appear to  

					create a comprehensive approach to improving feed intake through  

					complementary pathways.  

					Urea (mg/dL) =  

					Absorbance of sample X concentration of standard (80 mg/dL)  

					Absorbance of standard  

					(14)  

					Estimation of Uric Acid  

					To extract the serum from the blood cells, it was centrifuged. 1.0 mL of  

					uricase enzyme solution was put to a test tube containing 0.1 mL of  

					serum that had been pipetted there. At 37°C, the mixture was incubated  

					for five minutes. A spectrophotometer was used to test the sample's  

					absorbance at 293 nm. Subtract the sample's absorbance upon  

					incubation from its absorbance prior to incubation (equation 15) to  

					measure the absorbance decrease. All determinations were performed  

					in duplicate, and the mean values were calculated for each sample.  

					Table 2: Effect of Testosterone-DMBA-Induced Prostate  

					Cancer in Wistar rats on Water Intake  

					Group  

					Water intake (ml)  

					174.70±5.58a  

					161.23±9.67a  

					130.45±10.82b  

					108.33±6.84b  

					113.49±10.95b  

					127.07±8.99b  

					128.39±10.54b  

					1

					2

					3

					4

					5

					6

					7

					Uric Acid (mg/dL) =  

					Absorbance of sample X concentration of standard (mg/dL)  

					Absorbance of standard  

					(15)  

					Data Analysis  

					SPSS software (Statistical Package for Social Sciences, version 21;  

					SPSS Inc., Chicago, IL, USA) was used to analyse the data. SEM, or  

					standard error of mean, is used to present the results. The study utilised  

					Duncan's multiple comparison test to identify significant variations in  

					group means. A significance level of p < 0.05 was established.  

					Values represent mean ± SEM. Values with identical superscripts do not  

					exhibit significant differences (P<0.05), while values with different  

					superscripts exhibit significant differences.  

					The findings for water intake suggest that while feed intake was  

					significantly affected by cancer induction, water intake remained  

					relatively stable, indicating differential effects on feeding and drinking  

					behaviours (Table 2). All intervention groups, including Group 3 with  

					the highest feed intake, exhibited significantly lower water intake  

					compared to both control groups. Some studies have proposed that  

					certain phytochemicals improve metabolic efficiency and reduce  

					oxidative stress.52 This, in turn, could enhance cellular water retention,  

					thereby reducing the physiological drive for water consumption. The  

					similarity in water intake between Flutamide and phytochemical  

					interventions suggests potentially overlapping mechanisms affecting  

					water homeostasis, despite their distinct pharmacological properties.  

					Both pharmaceutical and phytochemical interventions may improve  

					kidney function, reducing compensatory water consumption.  

					Specifically, papaya extracts, rich in antioxidants and bioactive  

					compounds, have been shown to mitigate oxidative stress and reduce  

					histopathological damage in renal tissue, suggesting their potential  

					protective effects against toxin-induced kidney inflammation,53  

					Results and Discussion  

					The feed intake data revealed distinct patterns across the seven  

					experimental groups (Table 1). The most notable finding is the  

					maintenance of feed intake in Group 3 (supplemented with combined  

					Papaya, watermelon, and cloves), which was statistically equivalent to  

					that of normal controls and significantly higher than in all other  

					treatment groups. This effect suggests that the bioactive compounds  

					present in these supplements have complementary mechanisms of  

					action.  

					A study demonstrated that phytochemical combinations demonstrate  

					enhanced bioavailability and improved modulation of inflammatory  

					cytokines compared to individual compounds.45,46 The results align with  

					findings that demonstrated improvement in nutritional parameters when  

					using polyphenol-carotenoid combinations in cancer intervention  

					studies.47 Group 7, treated with the anti-androgen medication flutamide,  

					showed feed intake levels that were not statistically different from the  

					cancer control group. The present findings suggest that the standard  

					flutamide dose may not adequately address the systemic effects of  

					prostate cancer that impact feed intake, highlighting a potential  

					advantage of the combined phytochemical approach employed in Group  

					3. The superior performance of the combined supplement can be  

					explained through multiple mechanisms.  

					potentially normalizing kidney function. Lycopene,  

					a

					bioactive  

					compound found in watermelon, reduces oxidative damage in renal  

					tubules by inhibiting NF-κB pathway activation, as demonstrated in  

					models of toxin-induced nephropathy.54,55,56 This protection may  

					improve water reabsorption efficiency, resulting in reduced water  

					requirements. Similarly, Clove's eugenol component has demonstrated  

					significant antioxidant activity in renal tissue through activation of Nrf2  

					pathways.57 It has been documented in a study that specific polyphenols  

					like eugenol exhibit potent antioxidant and anti-inflammatory  
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					properties, contributing to the protection of tissues and modulation of  

					molecular pathways involved in oxidative stress and inflammation,58  

					potentially improving water conservation at the renal level. Flutamide,  

					antagonizing androgen receptors, may indirectly alter vasopressin-  

					related pathways in contexts where testosterone's AR-dependent  

					signalling modulates AVP activity, such as social memory.59 The ability  

					of both phytochemical combinations and Flutamide to normalize water  

					consumption may represent an essential aspect of comprehensive  

					cancer management. Remarkably, the comparable effects of natural  

					interventions and pharmaceutical treatment suggest potential  

					complementary approaches for symptom management. The combined  

					Papaya, watermelon, and clove supplementation (Group 3) resulted in  

					the lowest weight gain among all groups, significantly lower than even  

					the cancer control group (Table 3). This finding appears paradoxical,  

					especially considering the previously discussed improvement in feed  

					intake observed in this group.  

					Table 3: Changes on Body Weight of Testosterone-DMBA-Induced Prostate Cancer in Wistar Rats  

					Initial body weight(g) Final body weight(g) Body weight diff (g) Increase in weight (%)  

					1

					2

					3

					4

					5

					6

					7

					92.5±5.70a  

					100.5±3.66a  

					94.5±7.68a  

					99.2±6.88a  

					97.7±3.31a  

					85.9±3.86a  

					84.6±4.30a  

					296±10.27c  

					203.50 220.00  

					196±10.20a  

					95.50  

					51.60  

					70.50  

					73.90  

					76.20  

					74.70  

					95.02  

					54.60  

					71.07  

					75.64  

					88.71  

					88.30  

					146.1±10.67b  

					169.7±18.42ab  

					171.6±9.26ab  

					162.1±13.79ab  

					159.3±10.66ab  

					Values represent mean ± SEM. Values with identical superscripts do not exhibit significant differences (P<0.05), while values with different superscripts exhibit  

					significant differences.  

					A study has shown that certain phytochemical combinations have  

					demonstrated improvements in health parameters, such as tumour  

					suppression and immune modulation, in cancer models. However, their  

					effects on weight regulation remain unexplored.60 However, this  

					phenomenon might be due to high thermogenesis associated with the  

					cancer condition.61 Groups receiving individual supplements (Groups 4-  

					6) exhibited intermediate weight gain, statistically indistinguishable  

					from both the cancer control (Group 2) and each other (Table 4). These  

					results differ from findings reporting that watermelon supplementation  

					led to significant improvements in weight regulation and metabolic  

					health in animal models, including reductions in body weight and BMI,  

					as evidenced by studies on its antioxidant and anti-inflammatory  

					properties.62 The lack of significant differences among individual  

					supplement groups suggests that none of these supplements alone  

					provided a substantial advantage in terms of body weight maintenance.  

					Interestingly, the clove supplementation group (Group 6) showed the  

					highest percentage increase among individual supplement groups,  

					approaching the cancer control level, potentially indicating a marginal  

					beneficial effect consistent with findings on eugenol's metabolic  

					effects.63 The flutamide treatment group (Group 7) showed weight gain  

					comparable to individual supplement groups and statistically  

					indistinguishable from the cancer control. The similarity between  

					pharmaceutical and phytochemical interventions suggests that while  

					both approaches may address specific cancer parameters, they do not  

					fully restore normal growth patterns, possibly due to persistent  

					metabolic alterations associated with the cancer state. The body weight  

					data presents a complex picture wherein normal controls exhibit  

					expected robust growth, cancer induction significantly impairs weight  

					gain, and interventions, particularly the combined supplement, result in  

					even further reduced weight gain despite improving other parameters.  

					These findings challenge simplistic interpretations of weight gain as a  

					uniformly positive outcome in cancer models and suggest that  

					metabolic reprogramming induced by phytochemical combinations  

					may represent  

					a

					mechanistically distinct approach to cancer  

					management compared to traditional pharmaceutical interventions. The  

					combined supplement group (Group 3) consistently exhibited the  

					highest organ-to-body weight ratios across multiple systems, while the  

					normal control group (Group 1) generally showed the lowest ratios  

					Table 4: Changes of Organ to Body Weight Ratio of Testosterone-DMBA-Induced Prostate Cancer in Wistar Rats  

					Group  

					LBW  

					KBW  

					SBW  

					HBW  

					LUBW (×10-3)  

					PRBW  

					(×10-3)  

					(×10-3)  

					(×10-3)  

					(×10-3)  

					(×10-3)  

					3.16±0.13c  

					4.21±0.13bc  

					6.38±0.22a  

					3.64±0.25bc  

					0.57±0.04b  

					0.74±0.04b  

					1.26±0.17a  

					0.65±0.07b  

					0.36±0.04d  

					0.43±0.06cd  

					1.39±0.07a  

					0.47±0.02cd  

					0.32±0.02b  

					0.40±0.03ab  

					0.53±0.09a  

					0.36±0.02ab  

					0.66±0.19c  

					1.33±0.14b  

					1.89±0.23a  

					1.06±0.08bc  

					0.35±0.14  

					0.66±0.24  

					0.74±0.07  

					0.32±0.03  

					1

					2

					3

					4

					5

					3.64±0.11bc  

					4.67±0.76b  

					4.17±0.26bc  

					0.68±0.02b  

					0.96±0.22ab  

					0.87±0.13b  

					0.53±0.02bcd  

					0.62±0.10bc  

					0.71±0.07b  

					0.36±0.08ab  

					0.43±0.05ab  

					0.42±0.05ab  

					0.85±0.05bc  

					1.35±0.28b  

					0.93±0.07bc  

					0.44±0.07  

					0.56±0.18  

					0.70±0.14  

					6

					7

					Values represent mean ± SEM. Values with identical superscripts do not exhibit significant differences (P<0.05), while values with different superscripts exhibit  

					significant differences. Key: LBW: Liver to body weight ratio, KBW: Kidney to body weight ratio, SBW: Spleen to body weight ratio, HBW: Heart to body weight  

					ratio, LUBW: Lung to body weight ratio, PRBW: Prostate to body weight ratio.  

					Notably, while statistical significance was observed in most organ  

					systems, prostate to body weight ratios did not show statistically  

					significant differences despite numerical variations. The consistently  

					elevated organ ratios in the combined supplement group likely reflect  

					increased metabolic demands for processing multiple bioactive  

					compounds. This aligns with a study demonstrating that certain  

					phytochemicals, such as hyperforin, may upregulate hepatic and renal  

					cytochrome P450 systems via nuclear receptor activation, though others  

					inhibit these enzymes, resulting in variable drug metabolism  

					outcomes.64 Potentially, resulting in organomegaly through cellular  

					hypertrophy and hyperplasia.  
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					The dramatic splenic enlargement in Group 3 suggests significant  

					immunological activation. In a study on "Bioactive components saffron  

					and their pharmacological properties.", it was documented that  

					bioactive components, including polyphenols and carotenoids, exhibit  

					immunomodulatory properties by influencing pathways such as NF-κB,  

					which may contribute to enhanced immune cell activity.65 This  

					immunostimulatory effect may contribute to anticancer activity through  

					enhanced tumour immunosurveillance. The elevated organ-to-body  

					weight ratios may partially reflect the reduced overall body weight  

					rather than absolute organ enlargement. These changes likely reflect  

					adaptive metabolic and immunological responses rather than  

					pathological effects, given the improved feed intake previously  

					observed in this group. The lack of significant differences in prostate  

					ratio despite the prostate cancer model suggests complex mechanisms  

					beyond simple prostate size modulation.  

					The absence of significant hematological alterations in intervention  

					groups compared to the cancer control suggests that the potential  

					therapeutic effects of these interventions likely operate through  

					mechanisms independent of systemic hematopoietic modulation. As  

					shown in some studies., phytochemical interventions may primarily  

					affect cancer microenvironment, cellular signaling pathways, and  

					metabolism rather than systemic hematological parameters.66,67 The  

					hematological stability observed in this study presents an interesting  

					contrast to the significant organ weight changes, particularly the  

					pronounced splenic enlargement in the combined supplement group  

					(Table 5). Despite the significantly enlarged spleen, no corresponding  

					changes in circulating leukocyte or platelet counts were observed. This  

					dissociation suggests that the splenic changes likely reflect altered  

					tissue architecture, resident cell populations, or metabolic activity rather  

					than increased hematopoietic function.  

					Despite the established cancer model and various interventions,  

					all groups maintained statistically similar hematological parameters.  

					Table 5: Effect of Testosterone-DMBA-Induced Prostate Cancer in Wistar Rats on Haematological Parameters  

					Group WBC  

					LYMPH  

					GRANU  

					RBC  

					HGB (g/dL)  

					MCV (fL)  

					MCH (pg)  

					PLT (103/µL)  

					(103/µL)  

					(103/µL)  

					(103/µL)  

					(106/µL)  

					1

					2

					3

					4

					5

					6

					7

					3.50±0.35a  

					4.40±0.66a  

					4.73±0.17 a  

					4.40±0.25a  

					5.03±1.46a  

					5.13±0.39a  

					4.97±0.52a  

					6.13±0.38a  

					6.23±0.23a  

					6.40±0.06a  

					6.57±0.27a  

					6.03±0.52a  

					6.37±0.03a  

					6.07±0.50a  

					2.67±0.19a  

					2.63±0.15a  

					2.73±0.33a  

					2.47±0.07a  

					2.70±0.38a  

					2.83±0.37a  

					2.83±0.15a  

					5.67±0.28a  

					5.63±0.27a  

					5.87±0.28a  

					5.87±0.07a  

					5.37±0.54a  

					6.10±0.00a  

					6.17±0.17a  

					14.00±0.55a  

					12.00±0.44a  

					13.00±0.52a  

					12.00±0.83a  

					11.00±0.73a  

					13.00±0.67a  

					11.00±1.50a  

					88.13±5.23a  

					85.00±3.27a  

					84.63±2.77a  

					88.90±1.50a  

					84.93±3.33a  

					87.40±0.00a  

					90.03±3.63a  

					34.47±2.85a  

					32.97±2.82a  

					32.23±3.24a  

					30.17±0.03a  

					28.67±1.48a  

					28.70±0.70a  

					32.00±1.90a  

					168.00±10.69 a  

					171.00±9.87a  

					187.33±0.33a  

					166.33±11.33a  

					161.00±26.91a  

					200.33±3.33 a  

					188.33±14.62a  

					Values represent mean ± SEM, n=3. Values with identical superscripts do not exhibit significant differences (P<0.05), while values with different superscripts  

					exhibit significant differences. Key: WBC: White blood cell, LYMPH: Lymphocytes, GRANU: Granulocytes, RBC: Red blood cell, HGB: Hemoglobin, MCV:  

					Mean corpuscular volume, MCH: Mean corpuscular hemoglobin, and PLT: Platelets.  

					While total cholesterol and triglyceride levels showed no statistically  

					significant differences among groups despite substantial numerical  

					variations, significant differences were observed in HDL and LDL  

					cholesterol levels, indicating specific impacts on lipoprotein  

					metabolism (Table 6). The relatively high cholesterol levels observed  

					in the flutamide group align with clinical observations documenting that  

					anti-androgen therapy can increase serum cholesterol through  

					alterations in hepatic lipid metabolism and reduced peripheral  

					utilization.68 The elevated HDL levels in the watermelon group are  

					particularly noteworthy and align with findings reporting significant  

					improvement in HDL functionality with lycopene supplementation by  

					modulating the activity of HDL-associated enzymes such as  

					paraoxonase-1 (PON-1), lecithin cholesterol acyltransferase (LCAT),  

					and cholesterol ester transfer protein (CETP).69  

					Table 6: Effect of Testosterone-DMBA-Induced Prostate Cancer in Wistar Rats on Serum Lipid Profile  

					Group  

					CHOL (mg/dL)  

					TRIG (mg/dL)  

					HDL (mg/dL)  

					LDL (mg/dL)  

					1

					2

					3

					4

					5

					6

					7

					44.77±11.24 a  

					45.07±18.61 a  

					54.87±17.09 a  

					83.53±13.03 a  

					15.00±2.89 ab  

					10.67±4.33 ab  

					18.77±8.08 b  

					17.70±13.28 b  

					70.30±31.50 a  

					41.33±16.08 a  

					67.13±14.38 a  

					94.10±17.97 a  

					77.07±15.08 a  

					101.93±25.71 a  

					6.00±2.08 b  

					13.33±4.41 ab  

					21.67±4.41 a  

					45.37±28.61 ab  

					12.60±10.02 b  

					25.10±20.62 b  

					93.83±43.44 a  

					115.80±27.83 a  

					74.47±7.83 a  

					86.23±17.09 a  

					8.33±1.67 b  

					9.17±3.63 b  

					37.23±17.88 ab  

					89.37±21.88 a  

					Values represent mean ± SEM, n=3. Values with identical superscripts do not exhibit significant differences (P<0.05), while values with different superscripts  

					exhibit significant differences. Key: CHOL: Cholesterol, TRIG: Triglycerides, HDL: High Density Lipoproteins, LDL: Low Density Lipoproteins.  

					The lycopene-rich composition of watermelon likely  

					contributes to these beneficial effects on HDL metabolism. Conversely,  

					the significantly lower HDL levels in the combined supplement, Clove,  

					and flutamide groups raise important questions about potential  

					interactions that regulate lipoprotein metabolism.70 The markedly  

					elevated LDL in the Flutamide could be attributed to reduced hepatic  

					LDL receptor expression following androgen suppression, as androgens  

					normally upregulate LDL receptor expression through sterol regulatory  

					element-binding protein 2 (SREBP-2) activation.71 The intermediate  

					LDL levels in the combined supplement and clove groups suggest  

					partial anti-androgenic effects of these interventions, consistent with  

					antagonistic interactions or dose-dependent effects.  

					A

					study  

					demonstrated that certain phytochemical combinations can exhibit  

					complex effects on HDL metabolism, potentially through competitive  
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					their known phytoestrogenic and aromatase-modulating properties.72,73  

					The findings highlight the necessity of incorporating metabolic effects  

					into cancer interventions and indicate that targeted phytochemical  

					strategies may provide more favourable metabolic outcomes than  

					traditional therapies. The elevated ALT in the watermelon group  

					contrasts with findings that reported hepatoprotective effects of  

					lycopene in various experimental models.74 This unexpected finding  

					might reflect specific interactions between lycopene and the  

					testosterone-DMBA model (Table 7).  

					Table 7: Effect of Testosterone-DMBA-Induced Prostate Cancer in Wistar Rats on Serum Liver Function Enzymes  

					Group  

					ALT(U/L)  

					AST(U/L)  

					ALP(U/L)  

					TP(g/dL)  

					ALB(g/dL)  

					2.73±0.03a  

					2.73±0.58a  

					1.30±0.35a  

					2.73±0.81a  

					2.10±0.36a  

					2.10±0.25a  

					2.57±0.45a  

					TB(mg/dL)  

					1

					2

					3

					4

					5

					6

					7

					13.67±2.40b  

					16.00±3.61ab  

					5.00±2.31b  

					8.67±4.10b  

					32.33±12.98a  

					17.67±2.40ab  

					14.00±1.00b  

					42.33±15.76a  

					22.33±6.57a  

					11.67±6.12a  

					25.67±8.69a  

					28.67±9.39a  

					30.33±5.46a  

					15.67±7.69a  

					27.00±6.85ab  

					21.00±1.23bc  

					24.00±3.35abc  

					26.00±3.51ab  

					35.00±5.04a  

					18.00±1.79bc  

					13.00±1.23c  

					16.53±2.67a  

					15.73±0.89a  

					5.80±1.01b  

					12.63±4.13ab  

					14.37±4.36ab  

					13.07±0.85ab  

					11.27±2.14ab  

					104.00±31.38a  

					96.00±13.67a  

					94.00±20.04a  

					53.00±22.76a  

					112.00±40.09a  

					166.00±63.99a  

					57.00±9.65a  

					Values represent mean ± SEM, n=3. Values with identical superscripts do not exhibit significant differences (P<0.05), while values with different superscripts  

					exhibit significant differences. Key: ALT: Alanine aminotransferase, AST: Aspartate aminotransferase, ALP: Alkaline phosphatase, TP: Total protein, ALB:  

					Albumin, TB: Total bilirubin  

					A study demonstrated that some dietary phytochemicals can  

					induce phase I hepatic enzymes through activation of pregnane X  

					receptor (PXR),75 potentially explaining the observed ALT elevation.  

					The significantly lower ALT in the combined supplement group  

					compared to the watermelon group suggests potential antagonistic  

					interactions among the phytochemicals that might mitigate the ALT-  

					elevating effect observed with watermelon alone. The absence of  

					significant AST alterations despite significant ALT changes might  

					reflect enzyme induction rather than hepatocellular damage, consistent  

					with the significantly enlarged liver observed in the combined  

					supplement group. ALP levels showed significant differences among  

					groups. The elevated ALP in the watermelon group parallels the ALT  

					findings, suggesting consistent hepatic effects of this intervention. The  

					profoundly reduced total protein in the combined supplement group is  

					particularly noteworthy and contrasts with the relatively normal protein  

					levels in groups receiving individual supplements. The reduced protein  

					levels in the combined supplement group could be interpreted in the  

					context of the previously observed enlarged liver and normalized feed  

					intake in this group. Studies showed that phytochemicals can modulate  

					multiple metabolic pathways, potentially influencing cellular  

					metabolism and signalling. These compounds have been shown to  

					target various pathways involved in energy metabolism, inflammation,  

					and oxidative stress, which could indirectly affect protein synthesis by  

					altering the cellular metabolic environment,76,77 potentially explaining  

					these seemingly contradictory findings. Despite the significant  

					differences in total protein, albumin levels showed no statistically  

					significant differences among groups. This dissociation between total  

					protein and albumin changes suggests selective alterations in non-  

					albumin protein fractions, including globulins and other hepatic  

					secretory proteins, which indicates that certain phytochemicals  

					selectively modulate specific protein synthesis pathways while  

					preserving others, particularly those essential for homeostatic functions  

					like albumin production. Total bilirubin levels showed substantial  

					numerical variations. However, these variations did not reach statistical  

					significance, likely due to high individual variability as reflected in the  

					large standard errors. The absence of significant bilirubin elevation in  

					any group suggests preserved hepatic excretory function despite the  

					other biochemical alterations observed.  

					Serum urea in the combined supplement group (Group 3) was  

					elevated and statistically significant compared to all groups. The  

					magnitude of elevation compared to normal controls suggests  

					significant renal functional impairment or altered nitrogen metabolism  

					with this specific intervention (Table 8). A study documented that  

					certain phytochemical combinations can induce profound metabolic  

					alterations through synergistic effects on multiple pathways.77  

					Interestingly, none of the individual supplements (Groups 4-6)  

					produced comparable urea elevations, suggesting unique interactive  

					effects specific to the combination.  

					Table 8: Effect of Testosterone-DMBA-Induced Prostate Cancer in Wistar rats on Serum Kidney Function Parameters  

					Group  

					UREA (mg/dL)  

					38.33±19.22b  

					70.00±5.00b  

					CREA (mEq/L)  

					0.90±0.12ab  

					0.90±0.15ab  

					1.30±0.20a  

					URIC (mg/dL)  

					3.47±0.35a  

					3.97±1.45a  

					3.33±0.13a  

					3.10±0.38a  

					3.37±0.35a  

					2.80±0.46a  

					3.17±0.86a  

					1

					2

					3

					4

					5
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					effect could be attributed, among others, to lycopene's potent  

					5204  

					© 2025 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License  

				

			

		

		
			
				
					
				
			

			
				
					Trop J Nat Prod Res, October 2025; 9(10): 5197 - 5207  

					ISSN 2616-0684 (Print)  

					ISSN 2616-0692 (Electronic)  

					antioxidant properties and specific effects on renal hemodynamics  

					through nitric oxide pathway enhancement.85 Uric acid levels showed  

					no statistically significant differences among groups. This stability in  

					uric acid levels despite significant alterations in other renal parameters  

					is noteworthy and suggests selective impairment of specific renal  

					functions rather than global dysfunction. Some studies proposed that  

					uric acid handling involves distinct renal transporters and pathways that  

					may be differentially affected by disease processes and  

					interventions.86,87,88,89  

					7. International agency for research on cancer. Cancer screening in  

					five continents [Internet]. Country factsheet: Nigeria [Accessed  

					2024  

					Dec  

					20].  

					Available  

					from:  

					https://canscreen5.iarc.fr/?page=countryfactsheet&q=NGA  

					8. Bunani N, Kisakye AN, Ssennyonjo A, Nuwaha F. Late diagnosis  

					of prostate cancer at the Uganda Cancer Institute: a retrospective  

					cohort study. Afr Health Sci. 2024; 24(3):147-155. Doi:  

					10.4314/ahs.v24i3.19  

					9. Waihenya C, Thumbi SM, Ojuka DK, Ragin C, Zeigler-Johnson  

					C. Barriers and facilitators to prostate cancer screening, early  

					presentation, and diagnosis: experiences of men diagnosed with  

					prostate cancer in Kenya. Front Cancer Control Soc. 2025;  

					3:1521454. Doi: 10.3389/fcacs.2025.1521454  

					10. Seraphin TP, Joko-Fru WY, Manraj SS, Chokunonga E, Somdyala  

					NI, Korir A, N'Da G, Finesse A, Wabinga H, Assefa M, Gnangnon  

					F. Prostate cancer survival in sub-Saharan Africa by age, stage at  

					diagnosis, and human development index: a population-based  

					registry study. Cancer Causes Control. 2021; 32:1001-19. Doi:  

					10.1007/s10552-021-01453-x  

					11. Cai C, Balk SP. Role of intratumoral androgen biosynthesis in  

					prostate cancer pathogenesis and response to therapy. Endocr  

					Relat Cancer. 2011; 18(5):R175-R182. Doi: 10.1530/ERC-10-  

					0339  

					Conclusion  

					This study examined the impact of Papaya, watermelon, and clove  

					supplementation on testosterone-DMBA-induced prostate cancer in  

					Wistar rats, uncovering intricate physiological relationships with  

					considerable implications for cancer management. The combined  

					supplementation normalized feed intake to levels comparable with  

					healthy controls through complementary anti-inflammatory, digestive,  

					and taste perception mechanisms, yet paradoxically resulted in the  

					lowest weight gain among all groups, suggesting beneficial metabolic  

					reprogramming. While the combined supplement group exhibited  

					pronounced organomegaly and potential nephrotoxicity indicated by  

					elevated serum urea and creatinine levels, watermelon supplementation  

					alone demonstrated the most favorable lipid profile with increased HDL  

					levels and normal liver and kidney function. In contrast, conventional  

					flutamide treatment resulted in elevated LDL levels, indicating  

					potential metabolic disadvantages compared to phytochemical  

					approaches. The absence of significant hematological changes across  

					all groups emphasizes the tissue-specific rather than systemic effects of  

					both the cancer model and interventions, showing the need for  

					comprehensive assessment in evaluating disease progression and  

					therapeutic efficacy. Future research should focus on mechanistic  

					investigations, toxicological assessments, optimized formulations,  

					long-term efficacy studies, translational research, bioavailability  

					evaluations, and tumor microenvironment effects.  

					12. Nacusi LP, Tindall DJ. Targeting 5α-reductase for prostate cancer  

					prevention and treatment. Nat Rev Urol. 2011; 8(7):378-384. Doi:  

					10.1038/nrurol.2011.67  

					13. Tan MH, Li J, Xu HE, Melcher K, Yong EL. Structure and role of  

					the androgen receptor in prostate cancer and drug discovery. Acta  

					Pharmacologica  

					Sinica.  

					2015;  

					36(1):3-23.  

					Doi:  

					10.1038/aps.2014.18  

					14. Kaipainen A, Zhang A, Gil da Costa RM, Lucas J, Marck B,  

					Matsumoto AM, Morrissey C, True LD, Mostaghel EA, Nelson  

					PS. Enhanced testosterone accumulation in prostate cancer cells  

					through facilitated diffusion. Prostate. 2019; 79(13):1530-1542.  

					Doi: 10.1002/pros.23874  

					15. Fujita K, Nonomura N. Role of the androgen receptor in prostate  

					cancer: a review. World J. Mens Health. 2019; 37(3). Doi:  

					10.5534/wjmh.180040  

					16. Michmerhuizen AR, Spratt DE, Pierce LJ, Speers CW.  

					Understanding androgen receptor signalling in breast cancer. NPJ  

					Breast Cancer. 2020; 6(1):47. Doi: 10.1038/s41523-020-00190-9  

					17. Culig Z, Santer FR. Androgen receptor signalling in prostate  

					cancer. Cancer Metastasis Rev. 2014; 33:413-427. Doi:  

					10.1007/s10555-013-9474-0  

					Conflict of Interest  

					The authors declare no conflict of interest.  

					Authors’ Declaration  

					The authors hereby declare that the work presented in this article is  

					original and that any liability for claims relating to the content of this  

					article will be borne by them.  

					18. Zhu ML, Kyprianou N. Cross-talk between androgen receptor and  

					growth factor signalling in prostate cancer cells. Endocr Relat  

					Cancer. 2008; 15(4):841-849. Doi: 10.1677/ERC-08-0084  

					19. Balk SP, Knudsen KE. Androgen receptor, the cell cycle, and  

					prostate cancer. Nucl Recept Signal. 2008; 6(1):nrs-06001. Doi:  

					10.1621/nrs.06001  

					20. Mosquera JM, Perner S, Demichelis F, Kim R, Hofer MD, Mertz  

					KD, Paris PL, Simko J, Collins C, Bismar TA, Chinnaiyan AM.  

					Morphological features of prostate cancer with TMPRSS2-ERG  

					gene fusion. J. Pathol. 2007; 212(1):91-101. Doi:  

					doi.org/10.1002/path.2154  

					References  

					1. Rawla P. Epidemiology of prostate cancer. World J. Oncol. 2019;  

					10(2):63. Doi: 10.14740/wjon1191  

					2. World cancer research fund. Prostate cancer statistics [Internet].  

					[Accessed  

					2024  

					Dec  

					20].  

					Available  

					from:  

					https://www.wcrf.org/preventing-cancer/cancer-  

					statistics/prostate-cancer-statistics/  

					3. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL,  

					Soerjomataram I, Jemal A. Global cancer statistics 2022:  

					GLOBOCAN estimates of incidence and mortality worldwide.  

					21. Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH, Yang LY,  

					Stanimirovic A, Encioiu E, Neill M, Loblaw DA, Trachtenberg J.  

					Prediction of cancer recurrence by TMPRSS2:ERG fusion gene  

					expression in localized prostate cancer after surgery. Br J. Cancer.  

					2007; 97(12):1690-1695. Doi: doi.org/10.1038/sj.bjc.6604054  

					22. St John J, Powell K, Conley-LaComb MK, Chinni SR. Clinical  

					and biological significance of TMPRSS2-ERG fusion gene  

					expression in prostate cancer progression. J. Cancer Sci Ther.  

					2012; 4(4):94. Doi: 10.4172/1948-5956.1000119  

					23. Li C, Cheng D, Li P. Dynamics of the androgen receptor in prostate  

					cancer: from disease progression to treatment resistance. Front  

					Oncol. 2025; 15:1542811. Doi: 10.3389/fonc.2025.1542811  

					24. Westaby D, Fenor de La Maza MD, Paschalis A, Jimenez-Vacas  

					JM, Welti J, de Bono J, Sharp A. Androgen receptor signalling: an  

					old but persistent target in advanced prostate cancer. Annu Rev  

					CA:  

					Cancer  

					J.  

					Clin. 2024; 74(3):229-263.  

					Doi:  

					10.3322/caac.21834  

					4. Centers for disease control and prevention. Prostate cancer  

					[Internet]. United States Cancer Statistics; [Accessed 2024 Dec  

					20]. Available from: https://www.cdc.gov/united-states-cancer-  

					statistics/publications/prostate-cancer.html  

					5. World Health Organization. Cancer today [Internet]. Global health  

					observatory; [Accessed 2024 Dec 20]. Available from:  

					http://gco.iarc.fr/today/home  

					6. Sharma R, Nanda M, Fronterre C, Sewagudde P, Ssentongo AE,  

					Yenney K, Arhin ND, Oh J, Amponsah-Manu F, Ssentongo P.  

					Comprehensive characterization of 34 cancer types inAfrica using  

					GLOBOCAN 2020 estimates. Front Public Health. 2022;  

					10:839835. Doi: 10.3389/fpubh.2022.839835  

					5205  

					© 2025 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License  

				

			

		

		
			
				
					
				
			

			
				
					Trop J Nat Prod Res, October 2025; 9(10): 5197 - 5207  

					ISSN 2616-0684 (Print)  

					ISSN 2616-0692 (Electronic)  

					Pharmacol Toxicol. 2022; 62(1):131-153. Doi: 10.1146/annurev-  

					pharmtox-052220-015912  

					nephrotoxic effects of a high fructose diet. FUOYE J. Pure Appl  

					Sci. 2022; 7(8):60. Doi: 10.55518/fjpas.JGKT1690  

					25. Coutinho I, Day TK, Tilley WD, Selth LA. Persistence of  

					androgen receptor signalling in castration-resistant prostate  

					cancer. Endocr Relat Cancer. 2016; 23(12):T179-T197. Doi:  

					doi.org/10.1530/ERC-16-0422  

					26. Karantanos T, Corn PG, Thompson TC. Mechanisms of castrate  

					resistance and novel therapeutic approaches in prostate cancer  

					progression after androgen deprivation therapy. Oncogene. 2013;  

					32(49):5501-5511. Doi: 10.1038/onc.2013.206  

					41. Bosland MC, Schlicht MJ, Horton L, McCormick DL. The MNU  

					plus testosterone rat model of prostate carcinogenesis. J. Toxicol  

					Pathol. 2022; 50(4):478-496. Doi: 10.1177/01926233221096345  

					42. Ibrahim AY, Mahmoud MG, Asker MS, Youness ER, El-Newary  

					SA. Attenuation of testosterone-dmba-induced prostate cancer in  

					rats by acidic exopolysaccharide from Bacillus sp. nrc5: inhibition  

					of 5α-reductase and Na+/K+ ATPase activity. Curr Microbiol.  

					2023; 80(1):8. Doi: 10.1007/s00284-022-03098-8  

					27. Kahn B, Collazo J, Kyprianou N. Androgen receptor as a driver of  

					therapeutic resistance in advanced prostate cancer. Int J. Biol Sci.  

					2014; 10(6):588-595. Doi: doi.org/10.7150/ijbs.8671  

					28. Jernberg E, Bergh A, Wikström P. Clinical Relevance of androgen  

					receptor alterations in prostate cancer. Endocr Connect. 2017;  

					6(8):R146-R161. Doi: doi.org/10.1530/EC-17-0118  

					43. Dacie JV, Lewis SM. Practical haematology. 7th ed. New York:  

					Churchill Livingstone; 1991. pp 50-56.  

					44. Friedewald WT, Levy RI, Fredrickson DS. Estimation of low-  

					density lipoprotein cholesterol concentration in plasma without  

					preparative ultracentrifugation. Clin Chem. 1972; 19:449-452.  

					Doi: 10.1093/clinchem/18.6.499  

					29. McCrea E, Sissung TM, Price DK, Chau CH, Figg WD. Impact of  

					androgen receptor variation on prostate cancer progression and  

					drug resistance. Pharmacol Res. 2016; 114:152-162. Doi:  

					10.1016/j.phrs.2016.10.001  

					30. Kallio HM, Hieta R, Latonen L, Brofeldt A, Annala M,  

					Kivinummi K, Tammela TL, Nykter M, Isaacs WB, Lilja HG,  

					Bova GS. Co-expression of constitutively active androgen  

					receptor splice variants AR-V3, AR-V7, and AR-V9 in castration-  

					resistant prostate cancer metastases. Br J. Cancer. 2018;  

					119(3):347-356. Doi: 10.1038/s41416-018-0172-0  

					45. Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M. Anticancer  

					efficacy of polyphenols and their combinations. Nutrients.  

					2016;8(9):552. Doi: 10.3390/nu8090552  

					46. Wang S, Zhu F, Kakuda Y. Sacha inchi (Plukenetia volubilis L.):  

					Nutritional composition, biological activity, and uses. Food Chem.  

					2018;265:316-328. Doi: 10.1016/j.foodchem.2018.05.055  

					47. Hon KW, Naidu R. Synergistic mechanisms of selected  

					polyphenols in overcoming chemoresistance and enhancing  

					chemosensitivity  

					in  

					colorectal  

					cancer.  

					Antioxidants.  

					2024;13(7):815. Doi: 10.3390/antiox13070815  

					31. Tu H, Gu J, Meng QH, Kim J, Strom S, Davis JW, He Y, Wagar  

					EA, Thompson TC, Logothetis CJ, Wu X. Association of low  

					serum testosterone with tumour aggressiveness and poor  

					prognosis in prostate cancer. Oncol Lett. 2017; 13(3):1949-1957.  

					Doi: doi.org/10.3892/ol.2017.5616  

					32. Cabral PH, Iwamoto MW, Fanni VS, Barros LD, Cardoso SN,  

					Mello LF, Glina S. Testosterone as a predictor of tumour  

					aggressiveness in prostate cancer patients. Int Braz J. Urol. 2013;  

					39(2):173-181. Doi: 10.1590/S1677-5538.IBJU.2013.02.04  

					33. Al-AsadyAM, Ghaleb IK. Influence of the carcinogenic substance  

					48. Kubczak M, Szustka A, Rogalińska M. Molecular targets of  

					natural compounds with anticancer properties. Int J. Mol Sci.  

					2021;22(24):13659. Doi: 10.3390/ijms222413659  

					49. Yadav NK, Sharma SK, Meena DK. Exogenous papain  

					supplementation: impacts on growth, digestibility, digestive  

					enzyme activities and oxidative stress in Labeo rohita fingerlings.  

					Aquac Sci Manag. 2024;1(1):1. Doi: 10.1186/s44365-024-00002-  

					2

					50. Ulanowska M, Olas B. Biological properties and prospects for the  

					application of eugenol—a review. Int J. Mol Sci. 2021;22(7):3671.  

					Doi: 10.3390/ijms22073671  

					(7,12-Dimethylbenz[a]anthracene  

					(DMBA))  

					on  

					tissue,  

					haematology character, and enzyme activity in rats. Indian J.  

					Forensic Med Toxicol. 2020; 14(1):1255-1259. Doi:  

					10.37506/v14/i1/2020/ijfmt/193082  

					51. Lao Y, Guo J, Fang J, Geng R, Li M, Qin Y, Wu J, Kang SG, Huang  

					K, Tong T. Beyond flavor: the versatile roles of eugenol in health  

					and disease. Food Funct. 2024;15(21):10567-10581. Doi:  

					10.1039/D4FO02428A  

					52. Muscolo A, Mariateresa O, Giulio T, Mariateresa R. Oxidative  

					stress: the role of antioxidant phytochemicals in the prevention  

					and treatment of diseases. Int J. Mol Sci. 2024;25(6):3264. Doi:  

					10.3390/ijms25063264  

					53. El-Nekeety, A. A.; Abdel-Wahhab, K. G.; Abdel-Aziem, S. H.;  

					Mannaa, F. A.; Hassan, N. S.; Abdel-Wahhab, M. A. Papaya fruit  

					extracts enhance the antioxidant capacity and modulate the  

					genotoxicity and oxidative stress in the kidney of rats fed  

					ochratoxin A-contaminated diet. J. App Pharm Sci. 2017,  

					7(7):111–121. Doi: 10.7324/JAPS.2017.70718  

					54. Wang Y, Liu Z, Ma J, Xu Q, Gao H, Yin H Yu, W. Lycopene  

					attenuates the inflammation and apoptosis in aristolochic acid  

					nephropathy by targeting the Nrf2 antioxidant system. Redox Biol.  

					2022, 57:102494. Doi: 10.1016/j.redox.2022.102494  

					34. Naruse M, Ishigamori R, Imai T. Genetic and histological  

					characteristics of DMBA-induced mammary tumors in an  

					organoid-based carcinogenesis model. Front Genet. 2021;  

					12:765131. Doi: 10.3389/fgene.2021.765131  

					35. Kong YR, Jong YX, Balakrishnan M, Bok ZK, Weng JK, Tay KC,  

					Goh BH, OngYS, Chan KG, Lee LH, Khaw KY. Beneficial effects  

					of Carica papaya extracts and phytochemicals on oxidative stress  

					and related diseases: a mini review. Biology. 2021; 10(4):287. Doi:  

					10.3390/biology10040287  

					36. Ayubi N, Syafawi A, Padmasari DF, Putri DR, Komaini A,  

					Yulfadinata A, Callixte C, Aljunaid M, Wibawa JC. Antioxidant  

					and anti-inflammatory properties of watermelon (Citrullus  

					lanatus) have the potential to reduce oxidative stress and  

					inflammation after exercise/physical activity: systematic review.  

					Retos. 2024; 55:20-26. Doi: 10.47197/retos.v55.103029  

					37. Crowe-White KM, Nagabooshanam VA, Dudenbostel T, Locher  

					JL, Chavers TP, Ellis AC. 100% watermelon juice as a food-first  

					intervention to improve cognitive function: ancillary findings  

					from a randomized controlled trial. J. Nutr Gerontol Geriatr. 2021;  

					40(4):304-12. Doi: 10.1080/21551197.2021.1988028  

					55. Albadrani GM, Altyar AE, Kensara OA, Haridy MA, Sayed AA,  

					Mohammedsaleh ZM, Abdel-Daim MM. Lycopene alleviates 5-  

					fluorouracil-induced nephrotoxicity by modulating PPAR-γ,  

					Nrf2/HO-1, and NF-κB/TNF-α/IL-6 signals. Ren Fail. 2024,  

					46(2):2423843. Doi: 10.1080/0886022X.2024.2423843  

					56. Pan X, Zhu R, Pei J, Zhang L. Lycopene: A potent antioxidant to  

					alleviate kidney disease. Int Immunopharmacol. 2025;  

					151:114363. Doi: 10.1016/j.intimp.2025.114363  

					57. Damasceno RO, Pinheiro JL, Rodrigues LH, Gomes RC, Duarte  

					AB, Emídio JJ, Diniz LR, de Sousa DP. Anti-Inflammatory and  

					Antioxidant Activities of Eugenol: An Update. Pharmaceuticals.  

					2024; 17(11):1505. Doi: 10.3390/ph17111505  

					38. Pramod K, Ansari SH, Ali J. Versatile pharmacological actions of  

					eugenol,  

					a

					natural compound. Nat Prod Commun. 2010;  

					5(12):1934578X1000501236.  

					10.1177/1934578X1000501236  

					Doi:  

					39. Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC.  

					Pharmacological properties and health benefits of eugenol: a  

					comprehensive review. Oxidative Med Cell Longev. 2021;  

					2021:2497354. Doi: 10.1155/2021/2497354  

					40. Idoko AS, Abdullahi A, Maibulangu BM, Nura L, Imam NU,  

					Bonomi ZM, Muhammed F, Umar S. Protective Effects of Allium  

					sativum and Curcuma longa powder against hepatotoxic and  

					58. Barboza JN, da Silva Maia Bezerra Filho C, Silva RO, Medeiros  

					JVR, de Sousa DP. An overview on the anti-inflammatory  

					potential and antioxidant profile of eugenol. Oxid Med Cell  

					Longev. 2018; 2018(1):3957262. Doi: 10.1155/2018/3957262  

					5206  

					© 2025 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License  

				

			

		

		
			
				
					
				
			

			
				
					Trop J Nat Prod Res, October 2025; 9(10): 5197 - 5207  

					ISSN 2616-0684 (Print)  

					ISSN 2616-0692 (Electronic)  

					59. Rigney N, de Vries GJ, Petrulis A. Modulation of social behavior  

					by distinct vasopressin sources. Front Endocrinol. 2023;  

					14:1127792. Doi: 10.3389/fendo.2023.1127792  

					76. Shannar A, Sarwar MS, Kong ANT. Metabolic and epigenetic  

					reprogramming by dietary phytochemicals in cancer and health.  

					Prev  

					Nutr  

					Food  

					Sci.  

					2022;  

					27(4):335.  

					Doi:  

					60. Talib WH, Awajan D, Hamed RA, Azzam AO, Mahmod AI, Al-  

					Yasari IH. Combination anticancer therapies using selected  

					10.3746/pnf.2022.27.4.335  

					77. Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S,  

					Simon HU, Barlev NA. Targeting of multiple metabolic pathways  

					in cancer by phytochemicals. Antioxidants. 2023; 12(11):2012.  

					Doi: 10.3390/antiox12112012  

					78. Aqil F, Munagala R, Jeyabalan J, Vadhanam MV. Bioavailability  

					of phytochemicals and its enhancement by drug delivery systems.  

					phytochemicals.  

					Molecules.  

					2022;  

					27(17):5452.  

					Doi:  

					10.3390/molecules27175452  

					61. Gandhi S, Oshi M, Murthy V, Repasky EA, Takabe K. Enhanced  

					thermogenesis in triple-negative breast cancer is associated with  

					pro-tumor immune microenvironment. Cancers. 2021;  

					13(11):2559. Doi: 10.3390/cancers13112559  

					Cancer  

					Lett.  

					2013;  

					334(1):133-141.  

					Doi:  

					62. Manivannan A, Lee ES, Han K, Lee HE, Kim DS. Versatile  

					nutraceutical potentials of watermelon—A modest fruit loaded  

					with pharmaceutically valuable phytochemicals. Molecules. 2020;  

					25(22):5258. Doi: 10.3390/molecules25225258  

					63. Ulanowska M, Olas B. Biological properties and prospects for the  

					application of eugenol—a review. Int J. Mol Sci. 2021;  

					22(7):3671. Doi: 10.3390/ijms22073671  

					64. Gómez-Garduño J, León-Rodríguez R, Alemón-Medina R, Pérez-  

					Guillé BE, Soriano-Rosales RE, González-Ortiz A, Chávez-  

					Pacheco JL, Solorio-López E, Fernandez-Pérez P, Rivera-  

					Espinosa L. Phytochemicals that interfere with drug metabolism  

					and transport, modifying plasma concentration in humans and  

					animals. Dose Response. 2022; 20(3):15593258221120485. Doi:  

					10.1177/15593258221120485  

					65. Bolhassani A. Bioactive components of saffron and their  

					pharmacological properties. Stud Nat Prod Chem. 2018; 58:289–  

					311. Doi: 10.1016/B978-0-444-64056-7.00010-6  

					10.1016/j.canlet.2013.02.032  

					79. Rizeq B, Gupta I, Ilesanmi J, AlSafran M, Rahman MM, Ouhtit A.  

					Chemopreventive effects of phytochemical combinations in  

					cancer. J. Cancer. 2020; 11(15):4521. Doi: 10.7150/jca.34374  

					80. Vaou N, Stavropoulou E, Voidarou CC, Tsakris Z, Rozos G,  

					Tsigalou C, Bezirtzoglou E. Antimicrobial combination effects of  

					bioactive compounds derived from medical plants. Antibiotics.  

					2022; 11(8):1014. Doi: 10.3390/antibiotics11081014  

					81. Nicolescu A, Babotă M, Barros L, Rocchetti G, Lucini L, Tanase  

					C, Mocan A, Bunea CI, Crișan G. Bioaccessibility and bioactive  

					potential of different phytochemical classes from nutraceuticals  

					and functional foods. Front Nutr. 2023; 10:1184535. Doi:  

					10.3389/fnut.2023.1184535  

					82. Ávila M, Mora Sánchez MG, Bernal Amador AS, Paniagua R.  

					Metabolism of creatinine and its clinical utility in evaluating  

					kidney function and body composition. Biomolecules. 2025;  

					15(1):41. Doi: 10.3390/biom15010041  

					66. Budisan L, Gulei D, Zanoaga OM, Irimie AI, Chira S, Braicu C,  

					Gherman CD, Berindan-Neagoe I. Dietary intervention by  

					phytochemicals and their role in modulating coding and non-  

					coding genes in cancer. Int J. Mol Sci. 2017; 18(6):1178. Doi:  

					10.3390/ijms18061178  

					67. Ahmed MB, Islam SU, Alghamdi AA, Kamran M, Ahsan H, Lee  

					YS. Role of phytochemicals as chemopreventive agents and  

					signaling molecule modulators in cancer therapeutics and  

					inflammation. Int J. Mol Sci. 2022; 23(24):15765. Doi:  

					10.3390/ijms232415765  

					68. Ahmed D, Abdel-Shafy EA, Mohammed EAA, Alnour HEAB,  

					Ismail AM, Cacciatore S, Zerbini LF. Altered amino and fatty  

					acids metabolism in Sudanese prostate cancer patients: insights  

					from metabolic analysis. J. Circ Biomark. 2024; 13:36. Doi;  

					10.33393/jcb.2024.3146  

					69. McEneny J, Henry SL, Woodside J, Moir S, Rudd A, Vaughan N,  

					Thies F. Effect of lycopene-rich diets on HDL functionality and  

					inflammatory markers in moderately overweight adults. Front  

					Nutr. 2022; 9:954593. Doi: 10.3389/fnut.2022.954593  

					83. Bedir F, Kocaturk H, Turangezli O, Sener E, Akyuz S, Ozgeris FB,  

					Dabanlioglu BÜ, Suleyman H, Altuner D, Suleyman B. The  

					protective effect of lycopene against oxidative kidney damage  

					associated with combined use of isoniazid and rifampicin in rats.  

					Braz J. Med Biol Res. 2021; 54:e10660. Doi: 10.1590/1414-  

					431x2020e10660  

					84. Gao X, Lin B, Chen C, Fang Z, Yang J, Wu S, Chen Q, Zheng K,  

					Yu Z, Li Y, Gao X. Lycopene from tomatoes and tomato products  

					exerts renoprotective effects by ameliorating oxidative stress,  

					apoptosis, pyroptosis, fibrosis, and inflammatory injury in calcium  

					oxalate nephrolithiasis: the underlying mechanisms. Food Funct.  

					2024; 15(8):4021-4036. Doi: 10.1039/D4FO00042K  

					85. Zhong Q, Piao Y, Yin S, Zhang K. Association of serum lycopene  

					concentrations with all-cause and cardiovascular mortality in  

					individuals with chronic kidney disease. Front in Nutr. 2022;  

					9:1048884. Doi: 10.3389/fnut.2022.1048884  

					86. Bruno CM, Pricoco G, Cantone D, Marino E, Bruno F. Tubular  

					handling of uric acid and factors influencing its renal excretion: a  

					short  

					10.33590/emjnephrol/10311174  

					87. Xu L, Shi Y, Zhuang S, Liu N. Recent advances in uric acid  

					transporters. Oncotarget. 2017; 8(59):100852. Doi:  

					10.18632/oncotarget.20135  

					review.  

					EMJ  

					Nephrol.  

					2016;4(1):92-7.  

					Doi:  

					70. Xue Z, Wang R, Yu W, Kou X. Cholesterol-lowering mechanisms  

					of phytochemicals: a review. Curr Top Nutraceutical Res. 2017;  

					15(3-4): 111-122.  

					71. Zhang Y, Ma KL, Ruan XZ, Liu BC. Involvement of the low-  

					density lipoprotein receptor pathway dysregulation in lipid  

					disorder-mediated organ injury. Int J. Biol Sci. 2016; 12(5):569-  

					579. Doi: doi.org/10.7150/ijbs.14027  

					88. Jung SW, Kim SM, Kim YG, Lee SH, Moon JY. Role of uric acid  

					and inflammation in kidney disease. Am. J. Physiol. - Ren.  

					Physiol.  

					2020;  

					318:F1327–F1340.  

					Doi:  

					72. Arvindekar SA, Rathod S, Choudhari PB, Mane PK, Arvindekar  

					AU, Mali SN, Thorat B. Computational studies and structural  

					insights for the discovery of potential natural aromatase  

					modulators in hormone-dependent breast cancer. BioImpacts.  

					2024; 14(5):27783. Doi: 10.34172/bi.2024.27783  

					10.1152/ajprenal.00272.2019  

					89. Sun HL, Wu YW, Bian HG, Yang H, Wang H, Meng XM, Jin J.  

					Role of uric acid transporters and their inhibitors in hyperuricemia.  

					Front  

					Pharmacol.  

					2021;  

					12:667753.  

					Doi:  

					10.3389/fphar.2021.667753  

					73. Balunas MJ, Su B, Brueggemeier RW, Kinghorn AD. Natural  

					products as aromatase inhibitors. Anticancer Agents Med Chem.  

					2008; 8(6):646-682. Doi: 10.2174/187152008785133092  

					74. Ibrahim IM, Althagafy HS, Abd-Alhameed EK, Al-Thubiani WS,  

					Hassanein EH. Hepatoprotective effects of lycopene in various  

					liver diseases.  

					Life Sci. 2022; 310:121131. Doi:  

					10.1016/j.lfs.2022.121131  

					75. Zhang J, Pavek P, Kamaraj R, Ren L, Zhang T. Modulation of  

					human pregnane x receptor by dietary phytochemicals. Crit Rev  

					Food  

					Sci.  

					Nutr.  

					2023;  

					63(19):3279-3301.  

					Doi:  

					10.1080/10408398.2021.1995322  

					5207  

					© 2025 the authors. This work is licensed under the Creative Commons Attribution 4.0 International License  

				

			

		

	
EPUB/toc.xhtml

Table of Contents


		Page







EPUB/images/img_02.png





EPUB/images/img_01.png










