Effect of NPB Capsules Consisting of Allium sativum, Hibiscus sabdariffa, Alisma plantago-aquatica, and Gynostemma pentaphyllum on Lipid Metabolism Disorders

Main Article Content

Hoang L. Hiep
Nguyen H. Ngan
Le H. Phu

Abstract

Dyslipidemia is a common metabolic disorder marked by elevated total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C), and/or reduced high-density lipoprotein cholesterol (HDL-C). It is a key contributor to atherosclerosis. This study evaluated the therapeutic effects of NPB capsules in a murine model of dyslipidemia. The murine model was used to assess NPB capsules’ ability to modulate lipid dysregulation by inhibiting cholesterol esterase (CE) and 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase enzymes. In vitro assays showed that NPB capsules significantly inhibited cholesterol esterase (26.94%) and HMG-CoA reductase (41.98%). In vivo, NPB capsules reduced intestinal cholesterol absorption and hepatic lipogenesis, improving serum lipid profiles. These findings indicate NPB capsules’ potential as an herbal candidate for dyslipidemia management and support the utility of further clinical investigation. 

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Effect of NPB Capsules Consisting of Allium sativum, Hibiscus sabdariffa, Alisma plantago-aquatica, and Gynostemma pentaphyllum on Lipid Metabolism Disorders. (2025). Tropical Journal of Natural Product Research , 9(8), 3969 – 3974. https://doi.org/10.26538/tjnpr/v9i8.61

References

Arvanitis M, Lowenstein CJ. Dyslipidemia. Ann Intern Med. 2023; 176(6):ITC81-ITC96. Doi: 10.7326/AITC202306200 DOI: https://doi.org/10.7326/AITC202306200

Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism. 2019; 92:71-81. Doi: 10.1016/j.metabol.2018.11.005 DOI: https://doi.org/10.1016/j.metabol.2018.11.005

Warditiani NK, Swastini DA, Arisanti CIS, Sari PMNA, Wirasuta IMAG. Pharmacological potential of Andrographis paniculata (Burm. f.) Neesin preventing atherosclerosis: A review. Trop J Nat Prod Res. 2021; 5(11):1913-1918. Doi: 10.26538/tjnpr/v5i11.3 DOI: https://doi.org/10.26538/tjnpr/v5i11.3

Su X, Chen X, Wang B. Pathology of metabolically-related dyslipidemia. Clin Chim Acta. 2021; 521:107-115. Doi: 10.1016/j.cca.2021.06.029 DOI: https://doi.org/10.1016/j.cca.2021.06.029

Salim HM, Kurnia LF, Bintarti TW, Handayani H, Shimabukuro M. Hepatoprotective effects of methanol extract of Syzygium polyanthum L. leaves (Salam) on high fat diet. Trop J Nat Prod Res. 2021; 5(12):2092-2095. Doi: 10.26538/tjnpr/v5i12.8

Retnaningsih R, Jaeri S, Husni A, Maharani N, Anjani G. The hypolipidemic effects of combination of garlic, red yeast rice, and red ginger on hormonal status and lipid profiles among post-stroke dyslipidemia. Trop J Nat Prod Res. 2025; 9(6):2692-2696. Doi: 10.26538/tjnpr/v9i6.45 DOI: https://doi.org/10.26538/tjnpr/v9i6.45

Su X, Cheng Y, Zhang G, Wang B. Novel insights into the pathological mechanisms of metabolic related dyslipidemia. Mol Biol Rep. 2021; 48(7):5675-5687. Doi: 10.1007/s11033-021-06529-0 DOI: https://doi.org/10.1007/s11033-021-06529-0

Suh SH, Kim SW. Dyslipidemia in patients with chronic kidney disease: An updated overview. Diabetes Metab J. 2023; 47(5):612-629. Doi: 10.4093/dmj.2023.0067 DOI: https://doi.org/10.4093/dmj.2023.0067

Pires A, Sena C, Seiça R. Dyslipidemia and cardiovascular changes in children. Curr Opin Cardiol. 2016; 31(1):95-100. Doi: 10.1097/HCO.0000000000000249 DOI: https://doi.org/10.1097/HCO.0000000000000249

Kavey REW. Combined dyslipidemia in children and adolescents: A proposed new management approach. Curr Atheroscler Rep. 2023; 25(5):237-245. Doi: 10.1007/s11883-023-01099-x DOI: https://doi.org/10.1007/s11883-023-01099-x

Borghi C, Fogacci F, Agnoletti D, Cicero AFG. Hypertension and dyslipidemia combined therapeutic approaches. High Blood Press Cardiovasc Prev. 2022; 29(3):221-230. Doi: 10.1007/s40292-022-00507-8 DOI: https://doi.org/10.1007/s40292-022-00507-8

Trautwein EA, McKay S. The role of specific components of a plant-based diet in management of dyslipidemia and the impact on cardiovascular risk. Nutrients. 2020; 12(9):2671. Doi: 10.3390/nu12092671 DOI: https://doi.org/10.3390/nu12092671

Kirkpatrick CF, Sikand G, Petersen KS, Anderson CAM, Aspry KE, Bolick JP, Kris-Etherton PM, Maki KC. Nutrition interventions for adults with dyslipidemia: A clinical perspective from the national lipid association. J Clin Lipidol. 2023; 17(4):428-451. Doi: 10.1016/j.jacl.2023.05.099 DOI: https://doi.org/10.1016/j.jacl.2023.05.099

Silva ML, Bernardo MA, Singh J, de Mesquita MF. Cinnamon as a complementary therapeutic approach for dysglycemia and dyslipidemia control in type 2 diabetes mellitus and its molecular mechanism of action: A review. Nutrients. 2022; 14(13):2773. Doi: 10.3390/nu14132773 DOI: https://doi.org/10.3390/nu14132773

Okokon JE, Nyong ME, Thomas PS, Daniel AO, Enin GN, Udobang JA. Antiobesity activity of extract, fractions and pure compounds from husk of Zea mays. Trop J Nat Prod Res. 2021; 5(10):1868-1875. Doi: 10.26538/tjnpr/v5i10.27 DOI: https://doi.org/10.26538/tjnpr/v5i10.27

Siriyong T, Boonya-arunnate T, Ninbodee K, Kaewmuean T, Mettriyasakul T, Jawang K, Thongmongkol P , Chanwanitsakul S, Kaewnoi K, Buachum B, Saeloh D, Noosak C, Voravuthikunchai SP. Effects of traditional Thai herbal formulations in patients with obesity and borderline hyperlipidemia - A preliminary pilot study. Trop J Nat Prod Res. 2022; 6(1):29-33. Doi: 10.26538/tjnpr/v6i1.6 DOI: https://doi.org/10.26538/tjnpr/v6i1.6

Fakayode1 AE, Emma-Okon BO, Morakinyo AE, Fajobi AO, Akinyele KN, Oyedapo OO. Investigations of ameliorative potentials extract of P. pellucida on salt-fructose induced dyslipidemia in Wistar rats. Trop J Nat Prod Res. 2023; 7(9):4112-4116. Doi: 10.26538/tjnpr/v7i9.40 DOI: https://doi.org/10.26538/tjnpr/v7i9.40

Binh NTM, Ngan NH, Lan DTH, Hanh NH, Tuan NTH. Anti-hyperlipidemic effect of Camellia hakodae Ninh extract in an in vivo rat model. Trop J Nat Prod Res. 2024; 8(11):9199-9205. Doi: 10.26538/tjnpr/v8i11.32 DOI: https://doi.org/10.26538/tjnpr/v8i11.32

Loi DT. Vietnamese medicinal plants and herbs. Hanoi: Medicine Publishing House; 2016. 1300 p.

Chi VV. Dictionary of Vietnamese medicinal plants. Hanoi: Medicine Publishing House; 2012. 3200 p.

El-Saber Batiha G, Magdy Beshbishy A, G Wasef L, Elewa YHA, A Al-Sagan A, Abd El-Hack ME, Taha AE, M Abd-Elhakim Y, Prasad Devkota H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients. 2020; 12(3):872. Doi: 10.3390/nu12030872 DOI: https://doi.org/10.3390/nu12030872

Majewski M. Allium sativum: facts and myths regarding human health. Rocz Panstw Zakl Hig. 2014; 65(1):1-8.

Ahmed T, Wang CK. Black garlic and its bioactive compounds on human health diseases: A review. Molecules. 2021; 26(16):5028. Doi: 10.3390/molecules26165028 DOI: https://doi.org/10.3390/molecules26165028

Kimura S, Tung YC, Pan MH, Su NW, Lai YJ, Cheng KC. Black garlic: A critical review of its production, bioactivity, and application. J Food Drug Anal. 2017; 25(1):62-70. Doi: 10.1016/j.jfda.2016.11.003 DOI: https://doi.org/10.1016/j.jfda.2016.11.003

Ajebli M, Eddouks M. Phytotherapy of hypertension: An updated overview. Endocr Metab Immune Disord Drug Targets. 2020; 20(6):812-839. Doi: 10.2174/1871530320666191227104648 DOI: https://doi.org/10.2174/1871530320666191227104648

Javed M, Ahmed W. Black garlic: A review of its biological significance. J Food Biochem. 2022; 46(12):e14394. Doi: 10.1111/jfbc.14394 DOI: https://doi.org/10.1111/jfbc.14394

Stępień AE, Trojniak J, Tabarkiewicz J. Anti-cancer and anti-inflammatory properties of black garlic. Int J Mol Sci. 2024; 25(3):1801. Doi: 10.3390/ijms25031801 DOI: https://doi.org/10.3390/ijms25031801

Da-Costa-Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M. Hibiscus sabdariffa L. - a phytochemical and pharmacological review. Food Chem. 2014; 165:424-443. Doi: 10.1016/j.foodchem.2014.05.002 DOI: https://doi.org/10.1016/j.foodchem.2014.05.002

Sim YY, Nyam KL. Hibiscus cannabinus L. (kenaf) studies: Nutritional composition, phytochemistry, pharmacology, and potential applications. Food Chem. 2021; 344:128582. Doi: 10.1016/j.foodchem.2020.128582 DOI: https://doi.org/10.1016/j.foodchem.2020.128582

Wahabi HA, Alansary LA, Al-Sabban AH, Glasziuo P. The effectiveness of Hibiscus sabdariffa in the treatment of hypertension: a systematic review. Phytomedicine. 2010; 17(2):83-86. Doi: 10.1016/j.phymed.2009.09.002 DOI: https://doi.org/10.1016/j.phymed.2009.09.002

Serban C, Sahebkar A, Ursoniu S, Andrica F, Banach M. Effect of sour tea (Hibiscus sabdariffa L.) on arterial hypertension: a systematic review and meta-analysis of randomized controlled trials. J Hypertens. 2015; 33(6):1119-1127. Doi: 10.1097/HJH.0000000000000585 DOI: https://doi.org/10.1097/HJH.0000000000000585

Yagi S, Uba AI, Sinan KI, Piatti D, Sagratini G, Caprioli G, Eltigani SM, Lazarova I, Zengin G. Comparative study on the chemical profile, antioxidant activity, and enzyme inhibition capacity of red and white Hibiscus sabdariffa variety calyces. ACS Omega. 2023; 8(45):42511-42521. Doi: 10.1021/acsomega.3c05217 DOI: https://doi.org/10.1021/acsomega.3c05217

Su C, Li N, Ren R, Wang Y, Su X, Lu F, Zong R, Yang L, Ma X. Progress in the medicinal value, bioactive compounds, and pharmacological activities of Gynostemma pentaphyllum. Molecules. 2021; 26(20):6249. Doi: 10.3390/molecules26206249 DOI: https://doi.org/10.3390/molecules26206249

Xie P, Luo HT, Pei WJ, Xiao MY, Li FF, Gu YL, Piao XL. Saponins derived from Gynostemma pentaphyllum regulate triglyceride and cholesterol metabolism and the mechanisms: A review. J Ethnopharmacol. 2024; 319(Pt 1):117186. Doi: 10.1016/j.jep.2023.117186 DOI: https://doi.org/10.1016/j.jep.2023.117186

Dai N, Zhao FF, Fang M, Pu FL, Kong LY, Liu JP. Gynostemma pentaphyllum for dyslipidemia: A systematic review of randomized controlled trials. Front Pharmacol. 2022; 13:917521. Doi: 10.3389/fphar.2022.917521 DOI: https://doi.org/10.3389/fphar.2022.917521

Weng X, Lou YY, Wang YS, Huang YP, Zhang J, Yin ZQ, Pan K. New dammarane-type glycosides from Gynostemma pentaphyllum and their lipid-lowering activity. Bioorg Chem. 2021; 111:104843. Doi: 10.1016/j.bioorg.2021.104843 DOI: https://doi.org/10.1016/j.bioorg.2021.104843

Nguyen NH, Ha TKQ, Yang JL, Pham HTT, Oh WK. Triterpenoids from the genus Gynostemma: Chemistry and pharmacological activities. J Ethnopharmacol. 2021; 268:113574. Doi: 10.1016/j.jep.2020.113574 DOI: https://doi.org/10.1016/j.jep.2020.113574

Feng L, Liu TT, Huo XK, Tian XG, Wang C, Lv X, Ning J, Zhao WY, Zhang BJ, Sun CP, Ma XC. Alisma genus: Phytochemical constituents, biosynthesis, and biological activities. Phytother Res. 2021; 35(4):1872-1886. Doi: 10.1002/ptr.6933 DOI: https://doi.org/10.1002/ptr.6933

Wu Y, Wang X, Yang L, Kang S, Yan G, Han Y, Fang H, Sun H. Therapeutic effects of Alisma orientale and its active constituents on cardiovascular disease and obesity. Am J Chin Med. 2023; 51(3):623-650. Doi: 10.1142/S0192415X23500301 DOI: https://doi.org/10.1142/S0192415X23500301

Zhang LL, Xu W, Xu YL, Chen X, Huang M, Lu JJ. Therapeutic potential of rhizoma Alismatis: A review on ethnomedicinal application, phytochemistry, pharmacology, and toxicology. Ann N Y Acad Sci. 2017; 1401(1):90-101. Doi: 10.1111/nyas.13381 DOI: https://doi.org/10.1111/nyas.13381

Zhang J, Yan X, Jin Q, Chen J, Yang L, Wei W, Qu H, Yao C, Hou J, Gong L, Wu W, Guo DA. Novel triterpenoids from Alisma plantago-aquatica with influence on LDL uptake in HepG2 cells by inhibiting PCSK9. Phytomedicine. 2022; 105:154342. Doi: 10.1016/j.phymed.2022.154342 DOI: https://doi.org/10.1016/j.phymed.2022.154342

Park YJ, Kim MS, Kim HR, Kim JM, Hwang JK, Yang SH, Kim HJ, Lee DS, Oh H, Kim YC, Ryu DG, Lee YR, Kwon KB. Ethanol extract of Alismatis rhizome inhibits adipocyte differentiation of OP9 Cells. Evid Based Complement Alternat Med. 2014; 2014:415097. Doi: 10.1155/2014/415097 DOI: https://doi.org/10.1155/2014/415097

Xu F, Chen J, Zhang Y, Wu Q, Shen Y, Gu W, Liu S, Lu C, Liao H, Bao K. Molecular insight into the mechanism of lipid regulating effect of Alisma orientalis based on ACAT. Int J Biol Macromol. 2020; 158:1141-1162. Doi: 10.1016/j.ijbiomac.2020.04.260 DOI: https://doi.org/10.1016/j.ijbiomac.2020.04.260

Asmaa BH, Nayal Ream. In vitro screening of the pancreatic cholesterol esterase inhibitory activity of some medicinal plants grown in Syria. Int J Pharmacog Phytochem Res. 2016; 8(8):1432-1436.

Baskaran G, Salvamani S, Ahmad SA, Shaharuddin NA, Pattiram PD, Shukor MY. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Des Devel Ther. 2015; 9:509-517. Doi: 10.2147/DDDT.S75056 DOI: https://doi.org/10.2147/DDDT.S75056

Millar JS, Cromley DA, McCoy MG, Rader DJ, Billheimer JT. Determining hepatic triglyceride production in mice: comparison of poloxamer 407 with Triton WR-1339. J Lipid Res. 2005; 46(9):2023-2028. Doi: 10.1194/jlr.D500019-JLR200 DOI: https://doi.org/10.1194/jlr.D500019-JLR200