Determination of Antimalarial Properties of the Extract and Fractions of <i>Brenania brieyi (Rubiaceae)</i> Root In-Vivo Using Curative Model http://www.doi.org/10.26538/tjnpr/v8i1.43
Main Article Content
Abstract
Brenania brieyi (Rubiaceae) root is a medicinal plant, which has been widely used in ethno-medicine due to its antimalarial properties. The study aimed to evaluate the antimalarial potentials of B. brieyi root. Aqueous methanol extract of the roots of Brenania brieyi was prepared using cold maceration and dried in vacuo at 40 °C. The extract was fractionated using solvent-solvent partitioning with different solvents of varying polarity (n-hexane, ethyl acetate and methanol). Phytoconstituents of the extract and fractions were determined using standard procedures while the acute toxicity testing were carried out according to Lorkes method. Curative (8-day) test was employed for the antimalarial activity and the hematological parameters were also determined using standard procedures. Gas chromatography-mass spectroscopy (GC-MS) hyphenated technique was used to investigate volatile compounds present in the n-hexane fraction. Phytoconstituents present includes alkaloids, tannins, flavonoids, glycosides, carbohydrates, saponins while terpenoids is absent. Extracts at 200 and 400 mg/Kg dose levels caused a significant (p<0.05) comparable increase in parasitemia clearance of 86.36 % and 86.52 % respectively as opposed to 83.91 % clearance obtained from the standard (Arthemeter-lumefantrine). Ethyl acetate (87.89 %) and methanol (87.65 %) fractions gave higher clearance than Arthemeter-lumefantrine. The extract and fractions showed sufficient red blood cell restoration and reduction of white blood cell levels post treatment. GC-MS result shows the presence of twenty phyto-compounds, these scientific findings support the traditional use of Brenania brieyi root in management of malaria, for which the plant is known and used for.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
WHO, World Malaria Day 2018, Ready to beat malaria. Switzerland. World Health Organization, 2018:1-3.
Baird JK. Evidence and implications of mortality associated with acute Plasmodium vivax malaria: A Review. Clin Microbiol Rev. 2013; 26(1):36–57. Doi:10.1128/CMR.00074-12.
Tripathi K. Essentials of medical pharmacology. Jaypee Brothers Medical Publishers Ltd, New Delhi, India. 7thEdition, (2013); 816-835.
Alkali K, Abdullahi K, Mshelia HE, Yahaya MA, Abubakar N, Tarbutu AG. In vitro Antiplasmodial activity of aqueous leaves extract of Azadirachta indica (Juss), Senna occidentalis (Linn) against combination therapy of both plants extract on the multiplication of Plasmodium falciparum (Laveran). Ann Adv Biomed Sci. 2018; 1(1):000104.
WHO, Centre for Health Development. Traditional Medicine: Planning for cost -effective traditional health services in the new century - a discussion paper. (2002b); http:/www.who.or.jp /tm/research.
Ebigwai JK, Chiamaka SP, Eshiett N, Asuquo EA. Botanical inventory of some communities in Akpabuyo Local Government Area of Cross River state Nigeria. Arpn J. of Agric and Biolo Sci. 2014;9(12):435-443.
Sonke B, Couvreur TLP. Tree diversity of the Dja Faunal Reserve, Southeastern Cameroon. Biodiversity Data J. 2014;2: e1049. Doi:10.3897/BDJ.2.e1049.
Magne Ndé C, Njamen D, Mbanya JC, Zierau O, Vollmer G, Fomum ZT. Estrogenic effects of a methanol extract of the fruit of Brenania brieyi de Wild (Rubiaceae). J. Nat Med. 2007; 61(1):86–89. Doi:10.1007/s11418-006-0022-x.
Iwu MM, Obidoa O, Anazodo M. Biochemical mechanism of the antimalarial activity of Azadirachta indica leaf extract. Pharmacol. Res Commun. 1986; 18:81–91.
Neuwinger HD. Plants used for poison fishing in tropical Africa Toxicon. 2004; 44:417–430.
Nwafor F. Personal Interview. 2020.
Murugan M, Mohan VR. Phytochemical, FT-IR and antibacterial activity of whole plant extract of Aerva lanata (L.) Juss. Ex. Schult. J. of Med Plants Studies. 2004; 2:51-57.
Saxena M, Saxena J. Evalution of Phytoconstituents of Acorus calamus by FTIR and UV-Vis Spectroscopic Analysis. Inter J. of Bio and Pharma Res. 2012; 3(3):498-501.
Dhar P, Bajpai PK, Tayade AB, Chaurasia OP, Srivastava RB, Singh SB. Chemical composition and antioxidant capacities of phytococktail extracts from trans-Himalayan cold desert. BMC Compl and Altern Med. 2013; 13:259.
Adaka IC, Uzor PF, Nwodo NJ. Bioactivity guided fractionation of Icacina trichantha Oliv. (Icacinaceae) tuber for antimalarial activity against Plasmodium berghei infected mice and GC-MS profile of bioactive fraction. Indian J. of Trad Know. 2021; 20(4):902-912.
National Institute of Health. Guide for the care and use of Laboratory animal (Revised, 9th edition). Washington: NIH Publication. 2011; 01-246.
Akuodor GC, Ajoku GA, Ezeunala MN, Chilaka KC, Asika EC. Antimalarial potential of the ethanolic leaf extract of Pseudocedrala kotschyi. J. of Acute Dis. 2015; 4(1):23-27.
Lorke DA, New Approach for Acute Toxicity Testing. Arch. Toxicol. 1983; 54: 275-287.
Yadav R, Agarwala M. Phytochemical analysis of some medicinal plants. J. of Phytology. 2011; 3(12):10-14.
Dash SP, Dixit S, Sahoo S. Phytochemical and Biochemical Characterizations from Leaf Extracts from Azadirachta Indica: An Important Medicinal Plant. Biochem Anal Biochem. 2017; 6:323. doi: 10.4172/2161-1009.1000323.
Egbuna C, Ifemeje JC, Maduakor MC, Tijjani H, Udedi SC, Nwaka AC, Ifemeje MO. Phytochemical Test Methods: Qualitative, Quantitative and Proximate analysis: Fundamentals, Modern Techniques, and Applications. 1st Edn. Apple Academic press, New York. 2019; 247-260. doi: 10.1201/9780429426223-15.
Ihekwereme CP, Agbata CA, Chukwueze KO, Agu SC, In vivo evaluation of antiplasmodial activity of hydroethanolic stem extract of Baphia pubescens in Plasmodium berghei infected albino mice. J. Herb Med Pharmacol. 2016; 5(4):149-152.
Kolhatkar A, Ochei J. Medical Laboratory Science: Theory and Practice. Tata McGraw-Hill, New York. 2008; 311-347. http://mediatranz.com/medical-laboratory-science-theory-and-practice.html.
Ryley JF, Peters W. The Antimalarial Activity of some Quinolone Esters. Ann. Trop. Med. Parasitol. 1970; 84: 209-222.
Odo IF, Ezeanyika US, Ogugua VN, Parker EJ, Okagu IU. FTIR and GC-MS spectroscopic analysis of methanol and chloroform extracts of Brenania brieyi root bark. Americ J. of Res Comm. 2017; 5(3):44-54.
Nonita PP, Mylene MU, Antioxidant and cytotoxic activities and phytochemical screening of four Philippine medicinal plants. J. of Med Plant Res. 2010;4: 407-414.
Garba S, Okeniyi SO. Antimicrobial Activities of Total Alkaloids extracted from some Nigerian Medicinal plants. J. of Microbiol. Antimicrob. 2012; 4(3):60-63.
Odeja OO, Obi G, Ogwuche CE, Elemike EE, Oderinlo OO. Phytochemical screening, Antioxidant and Antimicrobial activities of Senna occidentalis (L.) leaves. Inter J. of Herbal Med. 2014;2(4):26- 30.
Ronan B, Ademir JSJ, Alaide BO. Plant-derived Antimalarial Agents: New Leads and Efficient Phytomedicine. Part II. Non- Alkaloid Natural Products – A Review. Molecules. 2009; 14 : 3037-3072.
Chukwujekwu JC, Coombes PH, Mulholland DA, Van Staden J. Emodin, antibacterial anthraquinone from the roots of Cassia occidentalis. South African J. of Botany. 2006; 72(2):295-297.
Sheeba M, Emmanuel S, Revathi K, Ignacimuthu S. Wound healing activity of Cassia occidentalis L. in Albino Wistar rats. Inter J. Intergrative Bio. 2009;8(1):1-6.
Adaka IC, Uzor PF, Nwodo NJ. Bioactivity guided fractionation of Icacina trichantha Oliv. (Icacinaceae) tuber for antimalarial activity against Plasmodium berghei infected mice and GC-MS profile of bioactive fraction. Indian J. of Trad Know. 2021; 20(4):902-912.
Uzor PF. Alkaloids from Plants with Antimalarial Activity: A Review of Recent Studies. Evidence-Based Complem and Altern Med. 2020; 1-17. https://doi.org/10.1155/2020/8749083.
Chinchilla M, Guerrero OM, Abarca G, Barrios M, Castro O. An in-vivo model to study the antimalarial capacity of plant extracts. Revista de Biologia Tropical. 1998; 46(1):35-39. PMID: 9711350.
Senthilkumaar P, Sarojini S. Hematological studies in malaria affected patients in North Chennai, Talmil Nadu, European J. of Experim Bio. 2013;3(1):199-205.
Francis U, Isaac Z, Yakubu A, Enosakhare A, Felix D. Hematological parameters of malaria infected patients in the University of Teaching Hospital, Calabar Nigeria. J. of Hematology and Thromboembolic Dis. 2014; 2960:171-173.
Udeinya IJ, Mbah AU, Chijioke CP, Shu EN. An antimalarial extract from neem leaves is antiretroviral. Trans Royal Soc Trop Med Hyg. 2004; 98:453-437.
Vilchez R, Lemme A, Ballhausen B, Thiel V, Schulz S, Jansen R, Sztajer H, Wagner-Dçbler I. Streptococcus mutans inhibits Candida albicans Hyphal Formation by the Fatty Acid Signaling Molecule trans-2- Decenoic Acid (SDSF) ChemBioChem. 2010; 11:1552 – 1562.
Evans RG, Day KH, Roman RJ, Hopp KH, Anderson WP. Effects of Intrarenal Infusion of 17-Octadecynoic Acid on Renal Antihypertensive Mechanisms in Anesthetized Rabbits. American J.Hypertension.1998; 11(7):803–812.
Beschi DA, Appavoo MR, Wilsy JI. GC-MS analysis, collected from Kavalkinaru area, Tirunelveli District, Tamil Nadu, India. European J. of Mol and Clini Med. 2021; 8(11):124-130.
Adeoye-Isijola1 MO, Olajuyigbe OO, Jonathan SG, Coopoosamy RM. Bioactive Compounds In Ethanol Extract Of Lentinus Squarrosulus Mont – A Nigerian Medicinal Macrofungus. Afr J. Tradit Complement Altern Med. 2018; 15(2):42-50.
Ubaid JM, Hussein HM, Hameed IH. Determination of Bioactive Chemical Composition of Callosobruchus maculutus and Investigation of its Anti-Fungal Activity. Inter J. of Pharmacognosy and Phytochemical Res. 2016;8(8):1293-1299.
Falodun A, Siraj R, Choudary MI. GC- MS analysis of insecticidal leaf essential oil of Pyrenacanthastaudtii Hutch and Dalz (Icacinaceae). Trop J. of Pharm Res. 2009; 8:139-143.
Galli C, Calder PC. Effects of fat and fatty acid intake on inflammatory and immune responses: a critical review. Ann. Nutrit. Metab. 2009; 55:123-39.