Cancer Biology and Therapeutics: Navigating Recent Advances and Charting Future Directions http://www.doi.org/10.26538/tjnpr/v7i12.4

Main Article Content

Wisdom D. Cleanclay
Suleiman Zakari
Temidayo O. Adigun
Timothy O. Ayeni
Precious C. Nnaji
Amuji D. Nnenna
Azeez Blessing
Adewale Adebosoye
Mary Gbadebo
Praise Agbetuyi-Tayo
Moses E. Emetere
Olubanke O. Ogunlana

Abstract

Cancer, a multifaceted and heterogeneous ailment, persists as a substantial global public health concern. Recent strides in cancer biology have profoundly augmented our comprehension of the intricate genetic and molecular mechanisms underlying the inception and advancement of cancer. This headway has propelled the formulation of innovative therapeutic strategies, embracing targeted interventions and immunotherapies, which have showcased promising outcomes in clinical assessments. However, a multitude of obstacles continue to challenge the creation of efficacious and individualized cancer treatments. This systematic review encapsulates an extensive vista of contemporary advancements in cancer biology and therapeutics, accentuating pivotal breakthroughs in our grasp of cancer's intricacies, while illuminating the latest therapeutic avenues for cancer management. Moreover, the paper elaborates on the quest's upcoming trajectories in cancer research and treatment, encompassing burgeoning technologies and uncharted domains of inquiry that might pave the way for more efficacious and personalized interventions for individuals afflicted by cancer.

Article Details

How to Cite
Cleanclay, W. D., Zakari, S., Adigun, T. . O., Ayeni, T. O., Nnaji, P. C., Nnenna, A. D., Blessing, A., Adebosoye, A., Gbadebo, M., Agbetuyi-Tayo, P., Emetere, M. E., & Ogunlana, O. O. (2023). Cancer Biology and Therapeutics: Navigating Recent Advances and Charting Future Directions: http://www.doi.org/10.26538/tjnpr/v7i12.4. Tropical Journal of Natural Product Research (TJNPR), 7(12), 5377-5402. https://tjnpr.org/index.php/home/article/view/3155
Section
Articles
Author Biographies

Wisdom D. Cleanclay, Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria

Suleiman Zakari, Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria

Department of Biochemistry, College of Medicine, Federal University of Health Sciences Otukpo, Benue State, Nigeria.

Timothy O. Ayeni, Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria

Amuji D. Nnenna, Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria

Azeez Blessing, Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria

 

Adewale Adebosoye, Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria

Mary Gbadebo, Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria

Praise Agbetuyi-Tayo, Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria

Olubanke O. Ogunlana, Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Covenant Applied Informatics and Communication African Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria

References

Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108(3):479–85.

Fidler IJ. Biological heterogeneity of cancer. Hum Vaccin Immunother. 2012;8(8):1141–2.

Chakraborty S, Rahman T. The difficulties in cancer treatment. Ecancermedicalscience. 2012;6:ed16.

Piña-Sánchez P, Chávez-González A, Ruiz-Tachiquín M, Vadillo E, Monroy-García A, Montesinos JJ, Grajales R, Gutiérrez de la Barrera M, Mayani H. Cancer Biology, Epidemiology, and Treatment in the 21st Century: Current Status and Future Challenges From a Biomedical Perspective. Cancer Control. 2021;28:107327482110387.

Dede Z, Tumer K, Kan T, Yucel B. Current Advances and Future Prospects in Cancer Immunotherapeutics. MMJ. 2023;27;38(1):88–94.

AACR. Experts Forecast Cancer Research and Treatment Advances in 2023. 2023; Available from: https://www.aacr.org/blog/2023/01/13/experts-forecast-cancer-research-and-treatment-advances-in-2023/

Yang L, Ning Q, Tang S song. Recent Advances and Next Breakthrough in Immunotherapy for Cancer Treatment. Cui D, editor. J. of Immunol. Res, 2022;18;2022:1–9.

Zhang Y, Zheng J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion. In: Xu J, editor. Regulation of Cancer Immune Checkpoints [Internet]. Singapore: Springer Singapore; 2020 [cited 2023 May 8]. p. 201–26. (Adv. Exp. Med. Bio; vol. 1248). Available from: http://link.springer.com/10.1007/978-981-15-3266-5_9

Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A, Guex-Crosier Y, Kuntzer T, Michielin O, Peters S, Coukos G, Spertini F, Thompson JA, Obeid M. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16(9):563–80.

Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, Adamow M, Kuk D, Panageas KS, Carrera C, Wong P, Quagliarello F, Wubbenhorst B, D’Andrea K, Pauken KE, Herati RS, Staupe RP, Schenkel JM, McGettigan S, Kothari S, George SM, Vonderheide RH, Amaravadi RK, Karakousis GC, Schuchter LM, Xu X, Nathanson KL, Wolchok JD, Gangadhar TC, Wherry EJ. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545(7652):60–5.

Shin MH, Kim J, Lim SA, Kim J, Kim SJ, Lee KM. NK Cell-Based Immunotherapies in Cancer. Immune Netw. 2020;20(2):e14.

Joshi S, Durden DL. Combinatorial Approach to Improve Cancer Immunotherapy: Rational Drug Design Strategy to Simultaneously Hit Multiple Targets to Kill Tumor Cells and to Activate the Immune System. J. Oncol. 2019;2019:1–18.

Salama L, Pastor ER, Stone T, Mousa SA. Emerging Nanopharmaceuticals and Nanonutraceuticals in Cancer Management. Biomedicines. 2020;8(9):347.

Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J. Chem. 2019;12(7):908–31.

Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano. 2021;15(11):16982–7015.

Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics. 2022;6(4):400–23.

Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31–46.

Girotti MR, Salatino M, Dalotto-Moreno T, Rabinovich GA. Sweetening the hallmarks of cancer: Galectins as multifunctional mediators of tumor progression. J. Exp. Med. 2019;217(2):e20182041.

Nagy Á, Munkácsy G, GyHorffy B. Pancancer survival analysis of cancer hallmark genes. Sci. rep. 2021;11(1):6047.

Hanahan D, Monje M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell. 2023;41(3):573–80.

Chuang HH, Zhen YY, Tsai YC, Chuang CH, Huang MS, Hsiao M, Yang C. Targeting Pin1 for Modulation of Cell Motility and Cancer Therapy. Biomedicines. 2021;9(4):359.

Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, Marino M, Martinez-Chantar ML, Nawroth R, Sanchez-Garcia I, Sharma D, Saxena NK, Singh N, Vlachostergios PJ, Guo S, Honoki K, Fujii H, Georgakilas AG, Bilsland A, Amedei A, Niccolai E, Amin A, Ashraf SS, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Keith WN, Nowsheen S. Sustained proliferation in cancer: mechanisms and novel therapeutic targets. Semin Cancer Biol. 2015;35(Suppl):S25–54.

López-Reig R, López-Guerrero JA. The hallmarks of ovarian cancer: proliferation and cell growth. EJC Suppl. 2020;15:27–37.

Mossahebi-Mohammadi M, Quan M, Zhang JS, Li X. FGF signaling pathway: a key regulator of stem cell pluripotency. Front. cell dev. bioL. 2020;8:79.

Zhou J, Chng WJ. Biological Hallmarks and Emerging Strategies to Target STAT3 Signaling in Multiple Myeloma. Cells. 2022;11(6):941.

Shirjang S, Mansoori B, Asghari S, Duijf PH, Mohammadi A, Gjerstorff M, Baradaran B. MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radic. Biol. Med. 2019;139:1–15.

Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020;17(7):395–417.

Sharma A, Boise L, Shanmugam M. Cancer Metabolism and the Evasion of Apoptotic Cell Death. Cancers. 2019;11(8):1144.

Ravi S, Alencar AM Jr, Arakelyan J, Xu W, Stauber R, Wang CI, Papyan R, Ghazaryan N, Pereira RM. An Update to Hallmarks of Cancer. Cureus. 2022;14(5):e24803. doi: 10.7759/cureus.24803. PMID: 35686268; PMCID: PMC9169686.

Koren E, Fuchs Y. Modes of Regulated Cell Death in CancerModes of Regulated Cell Death in Cancer. Cancer discov. 2021;11(2):245–65.

Strasser A, Vaux DL. Cell Death in the Origin and Treatment of Cancer. Mol. Cell. 2020;78(6):1045–54.

Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther. 2020;5(1):28.

Meirson T, Gil-Henn H, Samson AO. Invasion and metastasis: the elusive hallmark of cancer. Oncogene. 2020;39(9):2024–6.

Caon I, Bartolini B, Parnigoni A, Caravà E, Moretto P, Viola M, Karousou E, Vigetti D, Passi A. Revisiting the hallmarks of cancer: The role of hyaluronan. In: Semin. Cancer Biol. Elsevier; 2020. p. 9–19.

Nenclares P, Harrington KJ. The biology of cancer. Medicine. 2020;48(2):67–72.

Jayatilleke KM, Hulett MD. Heparanase and the hallmarks of cancer. J. Transl. Med. 2020;18:1–25.

Mortezaee K. Immune escape: A critical hallmark in solid tumors. Life Sci. 2020;258:118110.

O’Donnell JS, Teng MW, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 2019;16(3):151–67.

Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation—have anti-inflammatory therapies come of age? Nat. Rev. Clin. Oncol. 2021;18(5):261–79.

Asadzadeh Z, Safarzadeh E, Safaei S, Baradaran A, Mohammadi A, Hajiasgharzadeh K, Derakhshani A, Argentiero A, Silvestris N, Baradaran B. Current Approaches for Combination Therapy of Cancer: The Role of Immunogenic Cell Death. Cancers. 2020;12(4):1047.

Ferrari SM, Fallahi P, Galdiero MR, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Varricchi G, Marone G, Antonelli A. Immune and inflammatory cells in thyroid cancer microenvironment. Int. J. Mol. Sci. 2019;20(18):4413.

Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell. Mol. Immunol. 2020;17(1):1–12.

Tucci M, Passarelli A, Mannavola F, Felici C, Stucci LS, Cives M, Silvestris F. Immune system evasion as hallmark of melanoma progression: the role of dendritic cells. Front. Oncol. 2019;9:1148.

Vahidian F, Duijf PH, Safarzadeh E, Derakhshani A, Baghbanzadeh A, Baradaran B. Interactions between cancer stem cells, immune system and some environmental components: friends or foes? Immunol. Lett. 2019;208:19–29.

Al-Ostoot FH, Salah S, Khamees HA, Khanum SA. Tumor angiogenesis: Current challenges and therapeutic opportunities. Cancer Treat Res Commun. 2021;28:100422.

Wang R, Ma Y, Zhan S, Zhang G, Cao L, Zhang X, Shi T, Chen W. B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression. Cell Death Dis. 2020;11(1):55.

Girotti MR, Salatino M, Dalotto-Moreno T, Rabinovich GA. Sweetening the hallmarks of cancer: Galectins as multifunctional mediators of tumor progression. J. Exp. Med. 2019;217(2):e20182041.

Naszai M, Kurjan A, Maughan TS. The prognostic utility of pre-treatment neutrophil-to-lymphocyte-ratio (NLR) in colorectal cancer: A systematic review and meta-analysis. Cancer Med. 2021;10(17):5983–97.

Denk D, Greten FR. Inflammation: the incubator of the tumor microenvironment. Trends in Cancer. 2022;8(11):901–14.

Lee M. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Commun. 2021;41(10):937–67.

Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol. Ther. 2021;218:107670.

Senga SS, Grose RP. Hallmarks of cancer—the new testament. Open Biol. 2021;11(1):200358.

Cardoso APF, Banerjee M, Nail AN, Lykoudi A, States JC. miRNA dysregulation is an emerging modulator of genomic instability. In: Seminars in cancer biology. Elsevier; 2021. p. 120–31.

Marabitti V, Valenzisi P, Lillo G, Malacaria E, Palermo V, Pichierri P, Franchitto A. R-loop-associated genomic instability and implication of WRN and WRNIP1. Int. J. Mol. Sci. 2022;23(3):1547.

Gerlach SU, Herranz H. Genomic instability and cancer: lessons from Drosophila. Open Biol. 2020;10(6):200060.

Audrey A, de Haan L, van Vugt MA, de Boer HR. Processing DNA lesions during mitosis to prevent genomic instability. Biochem. Soc. Trans. 2022;50(4):1105–18.

Neuse CJ, Lomas OC, Schliemann C, Shen YJ, Manier S, Bustoros M, Ghobrial IM. Genome instability in multiple myeloma. Leukemia. 2020;34(11):2887–97.

Bonora M, Missiroli S, Perrone M, Fiorica F, Pinton P, Giorgi C. Mitochondrial Control of Genomic Instability in Cancer. Cancers. 2021;13(8):1914.

Zhang D, Huo D, Xie H, Wu L, Zhang J, Liu L, Jin Q, Chen X. CHG: a systematically integrated database of cancer hallmark genes. Front. genet. 2020;11:29.

Tímár J, Honn KV, Hendrix MJC, Marko-Varga G, Jalkanen S. Newly identified form of phenotypic plasticity of cancer: immunogenic mimicry. Cancer Metastasis Rev. 2023;42(1):323–34.

Thankamony AP, Subbalakshmi AR, Jolly MK, Nair R. Lineage Plasticity in Cancer: The Tale of a Skin-Walker. Cancers. 2021;13(14):3602.

Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31–46.

Tateishi AT, Okuma Y. Onco-biome in pharmacotherapy for lung cancer: a narrative review. Transl Lung Cancer Res. 2022 Nov;11(11):2332–45.

Merali N, Chouari T, Kayani K, Rayner CJ, Jiménez JI, Krell J, Giovannetti E, Bagwan I, Relph K, Rockall TA, Dhillon T, Pandha H, Annels NE, Frampton AE. A Comprehensive Review of the Current and Future Role of the Microbiome in Pancreatic Ductal Adenocarcinoma. Cancers. 2022;14(4):1020.

Hinshaw DC, Shevde LA. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019;79(18):4557–66.

Arneth B. Tumor Microenvironment. Medicina. 2019;56(1):15.

Anderson NM, Simon MC. The tumor microenvironment. Curr. Biol. 2020;30(16):R921–5.

Wang Q, Shao X, Zhang Y, Zhu M, Wang FXC, Mu J, Li J, Yao H, Chen K. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 2023;cam4.5698.

Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 2021;221:107753.

Pan Y, Yu Y, Wang X, Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front Immunol. 2020;11:583084.

Henke E, Nandigama R, Ergün S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front Mol Biosci. 2020;6:160.

Bonollo F, Thalmann GN, Kruithof-de Julio M, Karkampouna S. The Role of Cancer-Associated Fibroblasts in Prostate Cancer Tumorigenesis. Cancers. 2020 Jul 13;12(7):1887.

Kang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Afshar-Oromieh A, Thalmann GN, Karkampouna S. Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Letters. 2022;530:156–69.

Asif PJ, Longobardi C, Hahne M, Medema JP. The Role of Cancer-Associated Fibroblasts in Cancer Invasion and Metastasis. Cancers. 2021;13(18):4720.

Butti R, Khaladkar A, Bhardwaj P, Prakasam G. Heterotypic signaling of cancer-associated fibroblasts in shaping the cancer cell drug resistance. Cancer Drug Resist. 2023;182–204.

Xing F. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci. 2010;15(1):166.

Czekay RP, Cheon DJ, Samarakoon R, Kutz SM, Higgins PJ. Cancer-Associated Fibroblasts: Mechanisms of Tumor Progression and Novel Therapeutic Targets. Cancers. 2022;14(5):1231.

Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18(1):59.

Pandya PH, Murray ME, Pollok KE, Renbarger JL. The Immune System in Cancer Pathogenesis: Potential Therapeutic Approaches. J. Immunol. Res. 2016;2016:1–13.

Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Front Immunol. 2018;9:14.

Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013 Feb;138(2):105–15.

Toor SM, Elkord E. Therapeutic prospects of targeting myeloid-derived suppressor cells and immune checkpoints in cancer. Immunol Cell Biol. 2018 Oct;96(9):888–97.

Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 2020 Dec;19(1):116.

Kim JH, Kim BS, Lee SK. Regulatory T Cells in Tumor Microenvironment and Approach for Anticancer Immunotherapy. Immune Netw. 2020;20(1):e4.

Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74.

Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Mechanisms of immune suppression by myeloid-derived suppressor cells: the role of interleukin-10 as a key immunoregulatory cytokine. Open Biol. 2020;10(9):200111.

Yang Y, Li C, Liu T, Dai X, Bazhin AV. Myeloid-Derived Suppressor Cells in Tumors: From Mechanisms to Antigen Specificity and Microenvironmental Regulation. Front Immunol. 2020;11:1371.

Sobhani N, Tardiel-Cyril DR, Davtyan A, Generali D, Roudi R, Li Y. CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers. 2021;13(6):1440.

Andreu-Sanz D, Kobold S. Role and Potential of Different T Helper Cell Subsets in Adoptive Cell Therapy. Cancers. 2023;15(6):1650.

Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol. 2018;9:847.

Eelen G, Treps L, Li X, Carmeliet P. Basic and Therapeutic Aspects of Angiogenesis Updated. Circ Res. 2020;127(2):310–29.

Napione L, Alvaro M, Bussolino F. VEGF-Mediated Signal Transduction in Tumor Angiogenesis. In: Simionescu D, Simionescu A, editors. Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy [Internet]. InTech; 2017 [cited 2023 May 5]. Available from: http://www.intechopen.com/books/physiologic-and-pathologic-angiogenesis-signaling-mechanisms-and-targeted-therapy/vegf-mediated-signal-transduction-in-tumor-angiogenesis

Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016;97:4–27.

Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 2019;36(3):171–98.

Hass R, Von Der Ohe J, Ungefroren H. Impact of the Tumor Microenvironment on Tumor Heterogeneity and Consequences for Cancer Cell Plasticity and Stemness. Cancers. 2020;12(12):3716.

Takeshima H, Ushijima T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis. Oncol. 2019;3(1):7.

Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol. Oncol. 2007;1(1):26–41.

Zhu X, Wetta H. Genetics and epigenetics in tumorigenesis: acting separately or linked. Austin J Clin Med. 2014;1(3):1016.

Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jäger N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdés-Mas R, van Buuren MM, van 't Veer L, Vincent-Salomon A, Waddell N, Yates LR; Australian Pancreatic Cancer Genome Initiative; ICGC Breast Cancer Consortium; ICGC MMML-Seq Consortium; ICGC PedBrain; Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AW, Wu Y, Boot A, Covington KR, Gordenin DA, Bergstrom EN, Islam SMA, Lopez-Bigas N, Klimczak LJ, McPherson JR, Morganella S, Sabarinathan R, Wheeler DA, Mustonen V; PCAWG Mutational Signatures Working Group; Getz G, Rozen SG, Stratton MR; PCAWG Consortium. The repertoire of mutational signatures in human cancer. BioRxiv. 2018;322859.

Pathak A, Tomar S, Pathak S. Epigenetics and Cancer: A Comprehensive Review. Asian Pac. j. cancer biol. 2023;8(1):75–89.

Lu Y, Chan YT, Tan HY, Li S, Wang N, Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol. Cancer. 2020;19:1–16.

Ilango S, Paital B, Jayachandran P, Padma PR, Nirmaladevi R. Epigenetic alterations in cancer. Front. Biosci-Landmark. 2020;25(6):1058–109.

Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clin. epigenetics. 2019;11(1):1–18.

Vessoni AT, Filippi-Chiela EC, Lenz G, Batista LFZ. Tumor propagating cells: Drivers of tumor plasticity, heterogeneity, and recurrence. Oncogene. 2020;39(10):2055–68.

Tan T, Shi P, Abbas MN, Wang Y, Xu J, Chen Y, Cui H. Epigenetic modification regulates tumor progression and metastasis through EMT. Int. J. Oncol. 2022;60(6):1–17.

Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of tumor suppressor gene function in human cancer: an overview. Cell. Physiol. Biochem. 2018;51(6):2647–93.

Zhu X, Xuan Z, Chen J, Li Z, Zheng S, Song P. How DNA methylation affects the Warburg effect. Int. J. Biol. Sci. 2020;16(12):2029.

Muthu K. Role of novel histone modifications in cancer. 2018.

Recillas-Targa F. Cancer Epigenetics: An Overview. Archives of Medical Research. 2022.

Chandra Gupta S, Nandan Tripathi Y. Potential of long non‐coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int. J. Cancer. 2017;140(9):1955–67.

WHO. Palliative care [Internet]. Palliative care. 2020 [cited 2023 May 8]. Available from: https://www.who.int/news-room/fact-sheets/detail/palliative-care.

National Cancer Institute (NCI). Treatment for Cancer [Internet]. National Cancer Institute. 2023 [cited 2023 May 8]. Available from: https://www.cancer.gov/about-cancer/treatment.

Glatzer M, Panje CM, Sirén C, Cihoric N, Putora PM. Decision Making Criteria in Oncology [Internet]. Karger Publishers. 2020 [cited 2023 May 8]. Available from: https://karger.com/ocl/article/98/6/370/239414/Decision-Making-Criteria-in-Oncology.

Fitzsimmons AG, Dahlke DV, Bergeron CD, Smith KN, Patel A, Ory MG, Smith ML. Impact of complementary and alternative medicine offerings on cancer patients' emotional health and ability to self-manage health conditions. Complement Ther Med. 2019 Apr;43:102-108. doi: 10.1016/j.ctim.2019.01.011. Epub 2019 Jan 16. PMID: 30935516.

Mayo Foundation for Medical Education and Research (MFMER). Cancer treatment - Mayo Clinic [Internet]. Cancer treatment - Mayo Clinic. 2022 [cited 2023 May 8]. Available from: https://www.mayoclinic.org/tests-procedures/cancer-treatment/about/pac-20393344.

Dong P, Gewirtz DA. Editorial: Risks and Benefits of Adjuvants to Cancer Therapies [Internet]. PubMed Central (PMC). 2022 [cited 2023 May 8]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149592/

Poon DD. How to Make the most of Palliative Treatment in Cancer Care - Donald Poon and Associates [Internet]. Donald Poon and Associates. 2022 [cited 2023 May 8]. Available from: https://dyhpoon.com/how-to-make-the-most-of-palliative-treatment-in-cancer-care/

Stanford Health Care (SHC. Stanford Health Care (SHC) – (formerly Stanford Hospital & Clinics) [Internet]. Stanford Health Care (SHC) - Stanford Medical Center | Stanford Health Care. 2023 [cited 2023 May 8]. Available from: https://stanfordhealthcare.org/

Amjad MT, Chidharla A, Kasi A. Cancer Chemotherapy - StatPearls - NCBI Bookshelf [Internet]. Cancer Chemotherapy - StatPearls - NCBI Bookshelf. 2023 [cited 2023 May 8]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK564367/

Kwon S, Jung S, Baek SH. Combination Therapy of Radiation and Hyperthermia, Focusing on the Synergistic Anti-Cancer Effects and Research Trends [Internet]. MDPI. 2023 [cited 2023 May 8]. Available from: https://www.mdpi.com/2076-3921/12/4/924

Sahu M, Suryawanshi H. Immunotherapy: The future of cancer treatment [Internet]. PubMed Central (PMC). 2021 [cited 2023 May 8]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491352/

Mills CC, Kolb EA, Sampson VB. Development of chemotherapy with cell cycle inhibitors for adult and pediatric cancer therapy [Internet]. PubMed Central (PMC). 2018 [cited 2023 May 8]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5771851/

Madormo C. Types of Chemo Treatment [Internet]. Verywell Health. 2022 [cited 2023 May 8]. Available from: https://www.verywellhealth.com/types-of-chemo-treatment-5214518

Norx J. Chemotherapy Side Effects: What to Expect [Internet]. Verywell Health. 2021 [cited 2023 May 8]. Available from: https://www.verywellhealth.com/chemotherapy-side-effects-5093769

Schreiber G. General Principles of Radiation Therapy: Overview, Biologic Basis, Basic Physics [Internet]. General Principles of Radiation Therapy: Overview, Biologic Basis, Basic Physics. 2022 [cited 2023 May 8]. Available from: https://emedicine.medscape.com/article/846797-overview

Ndlovu N. Radiotherapy treatment in cancer control and its important role in Africa [Internet]. PubMed Central (PMC). 2019 [cited 2023 May 8]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722105/

Tenold M, Ravi P, Kumar M, Bowman A, Hammers H, Choueiri TK, Lara PN Jr. Current Approaches to the Treatment of Advanced or Metastatic Renal Cell Carcinoma. Am Soc Clin Oncol Educ Book. 2020;40:1-10. doi: 10.1200/EDBK_279881. PMID: 32239988.

Mishra AK, Ali A, Dutta S, Banday S, Malonia SK. Emerging Trends in Immunotherapy for Cancer [Internet]. MDPI. 2022 [cited 2023 May 8]. Available from: https://www.mdpi.com/2079-9721/10/3/60.

Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021;9:20503121211034366. doi: 10.1177/20503121211034366. PMID: 34408877; PMCID: PMC8366192.

Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience [Internet]. 2019 Sep 10 [cited 2023 May 10];13. Available from: /pmc/articles/PMC6753017/

Bedard PL, Hyman DM, Davids MS, Siu LL. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet

[Internet]. 2020 [cited 2023 May 10];395(10229):1078–88. Available from: http://www.thelancet.com/article/S0140673620301641/fulltext

Targeted therapies - Latest research and news | Nature [Internet]. [cited 2023 May 10]. Available from: https://www.nature.com/subjects/targeted-therapies

Shariati M, Meric-Bernstam F. Targeting AKT for cancer therapy. Expert Opin Investig Drugs [Internet]. 2019;28(11):977–88. Available from: https://pubmed.ncbi.nlm.nih.gov/31594388/

Min HY, Lee HY. Molecular targeted therapy for anticancer treatment. Exp Mol Med 2022 5410 [Internet]. 2022;54(10):1670–94. Available from: https://www.nature.com/articles/s12276-022-00864-3

Hou J, He Z, Liu T, Chen D, Wang B, Wen Q, Zheng X. Evolution of Molecular Targeted Cancer Therapy: Mechanisms of Drug Resistance and Novel Opportunities Identified by CRISPR-Cas9 Screening. Front Oncol [Internet]. 2022;12. Available from: https://pubmed.ncbi.nlm.nih.gov/35372044/

Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021 61 [Internet]. 202;6(1):1–48. Available from: https://www.nature.com/articles/s41392-021-00572-w

Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 2018;834:188–96.

Zahavi D, Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies 2020, Vol 9, Page 34 [Internet]. 2020;9(3):34. Available from: https://www.mdpi.com/2073-4468/9/3/34/htm

Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect. 2019;7(6):e00535.

Sun G, Rong D, Li Z, Sun G, Wu F, Li X, Cao H, Cheng Y, Tang W, Sun Y. Role of Small Molecule Targeted Compounds in Cancer: Progress, Opportunities, and Challenges. Front Cell Dev Biol. 2021;9:2043.

Liu GH, Chen T, Zhang X, Ma XL, Shi HS. Small molecule inhibitors targeting the cancers. MedComm [Internet]. 2022 [cited 2023 May 10];3(4):e181. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/mco2.181

Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother. 2020;125:110009.

Aalipour A, Chuang HY, Murty S, D’Souza AL, Park S min, Gulati GS, Patel CB, Beinat C, Simonetta F, Martinić I, Gowrishankar G, Robinson ER, Aalipour E, Zhian Z, Gambhir SS. Engineered immune cells as highly sensitive cancer diagnostics. Nat Biotechnol. 2019;37(5):531–9.

N T, B B, A B, S T. Promising approaches in cancer immunotherapy. Immunobiology [Internet]. 2020;225(2). Available from: https://pubmed.ncbi.nlm.nih.gov/31812343/

Klener P, Otahal P, Lateckova L, Klener P. Immunotherapy Approaches in Cancer Treatment. CPB. 2015;16(9):771–81.

Osemlak P, Miszczuk K, Jędrzejewski G, Nachulewicz P, Beń-Skowronek I, Brzozowska A. Testicular torsion: Its effect on autoimmunisation, pituitary–testis axis and correlation with primary gonadal dysfunction in boys. Pediatric Research. 2021;90(6):1193–200.

Zmysłowska A, Jakiel P, Gadzalska K, Majos A, Płoszaj T, Ben-Skowronek I, Deja G, Glowinska-Olszewska B, Jarosz-Chobot P, Klonowska B, Kowalska I, Mlynarski W, Mysliwiec M, Nazim J, Noczynska A, Robak-Kontna K, Skala-Zamorowska E, Skowronska B, Szadkowska A, Szypowska A, Walczak M, Borowiec M. Next- generation sequencing is an effective method for diagnosing patients with different forms of monogenic diabetes. Diabetes Res Clin Pract. 2022;183:109154. doi: 10.1016/j.diabres.2021.109154. Epub 2021 Nov 24. PMID: 34826540.

Taefehshokr N, Baradaran B, Baghbanzadeh A, Taefehshokr S. Promising approaches in cancer immunotherapy. Immunobiology. 2020 Mar;225(2):151875.

Moritz ED, Zapata LB, Lekiachvili A, Glidden E, Annor FB, Werner AK, Ussery EN, Hughes MM, Kimball A, DeSisto CL, Kenemer B, Shamout M, Garcia MC, Reagan-Steiner S, Petersen EE, Koumans EH, Ritchey MD, King BA, Jones CM, Briss PA, Delaney L, Patel A, Polen KD, Sives K, Meaney-Delman D, Chatham-Stephens K; Lung Injury Response Epidemiology/Surveillance Group; Lung Injury Response Epidemiology/Surveillance Task Force. Update: Characteristics of Patients in a National Outbreak of E-cigarette, or Vaping, Product Use-Associated Lung Injuries - United States, October 2019. MMWR Morb Mortal Wkly Rep. 2019 Nov 1;68(43):985-989. doi: 10.15585/mmwr.mm6843e1. Erratum in: MMWR Morb Mortal Wkly Rep. 2019;68(50):1170. PMID: 31671085; PMCID: PMC6822806.

Peters S, Kerr KM, Stahel R. PD-1 blockade in advanced NSCLC: A focus on pembrolizumab. Cancer Treat. Rev. 2018;62:39–49.

Fellner C. Ipilimumab (Yervoy) Prolongs Survival In Advanced Melanoma. P T. 2012;37(9):503–30.

Siafaka PI, Cağlar EŞ, Papadopoulou K, Tsanaktsis V, Karantas ID, Okur NU, Karasulu NY. Polymeric microparticles as alternative carriers for antidiabetic glibenclamide drug. Pharm. Biomed. Res. 2019;5(4):27–34.

Yang F, Jin H, Wang J, Sun Q, Yan C, Wei F, Ren X. Adoptive Cellular Therapy (ACT) for Cancer Treatment. Adv Exp Med Biol. 2016;909:169-239. doi: 10.1007/978-94-017-7555-7_4. PMID: 27240459.

Cao GD, He XB, Sun Q, Chen S, Wan K, Xu X, Feng X, Li PP, Chen B, Xiong MM. The Oncolytic Virus in Cancer Diagnosis and Treatment. Front Oncol. 2020;10:1786. doi: 10.3389/fonc.2020.01786. PMID: 33014876; PMCID: PMC7509414.

Santos Apolonio J, Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Silva Souza JV, Rocha Pinheiro SL, de Souza WR, Sande Loureiro M, de Melo FF. Oncolytic virus therapy in cancer: A current review. World J Virol. 2021;10(5):229-255. doi: 10.5501/wjv.v10.i5.229. PMID: 34631474; PMCID: PMC8474975.

Conlon KC, Miljkovic MD, Waldmann TA. Cytokines in the Treatment of Cancer. J. Interferon Cytokine Res. 2019;39(1):6–21.

Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, Brody JD. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022(8):911-926. doi: 10.1038/s43018-022-00418-6. PMID: 35999309.

Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MF, Ahmed H, Rahman N, Nainu F, Wahyudin E, Mitra S, Dhama K, Habiballah MM, Haque S, Islam A, Hassan MM. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol. 2022;12:891652. doi: 10.3389/fonc.2022.891652. PMID: 35814435; PMCID: PMC9262248.

Hao W, Zhao Y, Miao L, Cheng G, Zhao G, Li J, Sang Y, Li J, Zhao C, He X, Sui C, Wang C. Multiple Impact-Resistant 2D Covalent Organic Framework. Nano Letters. 2023.

Gavas S, Quazi S, Karpiński TM. Nanoparticles for Cancer Therapy: Current Progress and Challenges [Internet]. Nanoscale Research Letters. Springer Science and Business Media LLC; 2021. Available from: http://dx.doi.org/10.1186/s11671-021-03628-6

Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance [Internet]. Front. Mol. Biosci. Frontiers Media SA; 2020. Available from: http://dx.doi.org/10.3389/fmolb.2020.00193.

Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery [Internet]. Nat. Rev. Drug Discov. Springer Science and Business Media LLC; 2020. p. 101–124. Available from: http://dx.doi.org/10.1038/s41573-020-0090-8.

Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology [Internet]. Adv. Drug Deliv. Rev. Elsevier BV; 2014. p. 2–25. Available from: http://dx.doi.org/10.1016/j.addr.2013.11.009.

Gostimskaya I. CRISPR–Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing [Internet]. Biochemistry (Moscow). Pleiades Publishing Ltd; 2022. p. 777–788. Available from: http://dx.doi.org/10.1134/S0006297922080090

Zhan T, Rindtorff N, Betge J, Ebert MP, Boutros M. CRISPR/Cas9 for cancer research and therapy [Internet]. Seminars in Cancer Biology. Elsevier BV; 2019. p. 106–119. Available from: http://dx.doi.org/10.1016/j.semcancer.2018.04.001

Elemento O, Leslie C, Lundin J, Tourassi G. Artificial intelligence in cancer research, diagnosis and therapy [Internet]. Nat. Rev. Cancer. Springer Science and Business Media LLC; 2021. p. 747–752. Available from: http://dx.doi.org/10.1038/s41568-021-00399-1

Fetah KL, DiPardo BJ, Kongadzem E, Tomlinson JS, Elzagheid A, Elmusrati M, Khademhosseini A, Ashammakhi N. Cancer Modeling‐on‐a‐Chip with Future Artificial Intelligence Integration [Internet]. Small. Wiley; 2019. p. 1901985. Available from: http://dx.doi.org/10.1002/smll.201901985.

Tran WT, Jerzak K, Lu FI, Klein J, Tabbarah S, Lagree A, Wu T, Rosado-Mendez I, Law E, Saednia K, Sadeghi-Naini A. Personalized Breast Cancer Treatments Using Artificial Intelligence in Radiomics and Pathomics [Internet]. J Med Radiat Sci. Elsevier BV; 2019. p. S32–S41. Available from: http://dx.doi.org/10.1016/j.jmir.2019.07.010.

Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies [Internet]. Genome Medicine. Springer Science and Business Media LLC; 2020. Available from: http://dx.doi.org/10.1186/s13073-019-0703-1.

Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108(3):479–85.

Fidler IJ. Biological heterogeneity of cancer. Hum Vaccin Immunother. 2012;8(8):1141–2.

Chakraborty S, Rahman T. The difficulties in cancer treatment. Ecancermedicalscience. 2012;6:ed16.

Piña-Sánchez P, Chávez-González A, Ruiz-Tachiquín M, Vadillo E, Monroy-García A, Montesinos JJ, Grajales R, Gutiérrez de la Barrera M, Mayani H. Cancer Biology, Epidemiology, and Treatment in the 21st Century: Current Status and Future Challenges From a Biomedical Perspective. Cancer Control. 2021;28:10732748211038735. doi: 10.1177/10732748211038735. PMID: 34565215; PMCID: PMC8481752.

Dede Z, Tumer K, Kan T, Yucel B. Current Advances and Future Prospects in Cancer Immunotherapeutics. MMJ. 2023;38(1):88–94.

AACR. Experts Forecast Cancer Research and Treatment Advances in 2023. 2023; Available from: https://www.aacr.org/blog/2023/01/13/experts-forecast-cancer-research-and-treatment-advances-in-2023/

Yang L, Ning Q, Tang S song. Recent Advances and Next Breakthrough in Immunotherapy for Cancer Treatment. Cui D, editor. J. Immunol. Res. 2022;2022:1–9.

Zhang Y, Zheng J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion. In: Xu J, editor. Regulation of Cancer Immune Checkpoints [Internet]. Singapore: Springer Singapore; 2020 [cited 2023 May 8]. p. 201–26. (Adv. Exp. Med. Biol; vol. 1248). Available from: http://link.springer.com/10.1007/978-981-15-3266-5_9

Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A, Guex-Crosier Y, Kuntzer T, Michielin O, Peters S, Coukos G, Spertini F, Thompson JA, Obeid M. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16(9):563-580. doi: 10.1038/s41571-019-0218-0. PMID: 31092901.

Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, Adamow M, Kuk D, Panageas KS, Carrera C, Wong P, Quagliarello F, Wubbenhorst B, D'Andrea K, Pauken KE, Herati RS, Staupe RP, Schenkel JM, McGettigan S, Kothari S, George SM, Vonderheide RH, Amaravadi RK, Karakousis GC, Schuchter LM, Xu X, Nathanson KL, Wolchok JD, Gangadhar TC, Wherry EJ. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545(7652):60-65. doi: 10.1038/nature22079. PMID: 28397821; PMCID: PMC5554367.

Shin MH, Kim J, Lim SA, Kim J, Kim SJ, Lee KM. NK Cell-Based Immunotherapies in Cancer. Immune Netw. 2020;20(2):e14.

Joshi S, Durden DL. Combinatorial Approach to Improve Cancer Immunotherapy: Rational Drug Design Strategy to Simultaneously Hit Multiple Targets to Kill Tumor Cells and to Activate the Immune System. J. Oncol. 2019;2019:1–18.

Salama L, Pastor ER, Stone T, Mousa SA. Emerging Nanopharmaceuticals and Nanonutraceuticals in Cancer Management. Biomedicines. 2020;8(9):347.

Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12(7):908–31.

Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano. 2021;15(11):16982–7015.

Mosleh-Shirazi S, Abbasi M, Moaddeli MR, Vaez A, Shafiee M, Kasaee SR, Amani AM, Hatam S. Nanotechnology Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics. 2022;6(4):400-423. doi: 10.7150/ntno.74613. PMID: 36051855; PMCID: PMC9428923.

WHO. Cancer. 2022; Available from: https://www.who.int/news-room/fact-sheets/detail/cancer

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA A Cancer J Clin. 2021;71(1):7–33.

Hanna TP, King WD, Thibodeau S, Jalink M, Paulin GA, Harvey-Jones E, O'Sullivan DE, Booth CM, Sullivan R, Aggarwal A. Mortality due to cancer treatment delay: systematic review and meta-analysis. BMJ. 2020;371:m4087. doi: 10.1136/bmj.m4087. PMID: 33148535; PMCID: PMC7610021.

Loomans-Kropp HA, Umar A. Cancer prevention and screening: the next step in the era of precision medicine. npj Precision Onc. 2019;3(1):3.

Casanova-Salas I, Athie A, Boutros PC, Del Re M, Miyamoto DT, Pienta KJ, Posadas EM, Sowalsky AG, Stenzl A, Wyatt AW, Mateo J. Quantitative and Qualitative Analysis of Blood-based Liquid Biopsies to Inform Clinical Decision-making in Prostate Cancer. Eur Urol. 2021;79(6):762-771. doi: 10.1016/j.eururo.2020.12.037. PMID: 33422353; PMCID: PMC8941682.

Zein R, Sharrouf W, Selting K. Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. J. Oncol. 2020;2020:1–16.

Tan S, Li D, Zhu X. Cancer immunotherapy: Pros, cons and beyond. Biomedicine & Pharmacotherapy. 2020;124:109821.

Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17(12):e542–51.

Moeckel C, Bakhl K, Georgakopoulos-Soares I, Zaravinos A. The Efficacy of Tumor Mutation Burden as a Biomarker of Response to Immune Checkpoint Inhibitors. IJMS. 2023;24(7):6710.

Gong L, He R, Xu Y, Luo T, Jin K, Yuan W, Zheng Z, Liu L, Liang Z, Li A, Zheng Z, Li H. Neoantigen load as a prognostic and predictive marker for stage II/III non-small cell lung cancer in Chinese patients. Thorac Cancer. 2021;12(15):2170-2181. doi: 10.1111/1759-7714.14046. PMID: 34128337; PMCID: PMC8327700.

Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int. J. Biochem. Cell Biol. 2012;44(12):2144–51.

Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv Pharm Bull. 2017;7(3):339–48.

Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.

Ghate NB, Yamamoto V, Chakraborty E. Editorial: Advancement in Cancer Stem Cell Biology and Precision Medicine. Front Cell Dev Biol. 2022;10:890129.

Tan J, Zhu H, Tang G, Liu H, Wanggou S, Cao Y, Xin Z, Zhou Q, Zhan C, Wu Z, Guo Y, Jiang Z, Zhao M, Ren C, Jiang X, Yin W. Molecular Subtypes Based on the Stemness Index Predict Prognosis in Glioma Patients. Front Genet. 2021;12:616507. doi: 10.3389/fgene.2021.616507. PMID: 33732284; PMCID: PMC7957071.

Mashayekh K, Shiri P. An Overview of Recent Advances in the Applications of Click Chemistry in the Synthesis of Bioconjugates with Anticancer Activities. ChemistrySelect. 2019;4(46):13459–78.

Pudlarz A, Szemraj J. Nanoparticles as carriers of proteins, peptides and other therapeutic molecules. Open Life Sci. 2018;13(1):285–98.

Huo S, Jin S, Ma X, Xue X, Yang K, Kumar A, Wang PC, Zhang J, Hu Z, Liang XJ. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano. 2014;8(6):5852-62. doi: 10.1021/nn5008572. PMID: 24824865; PMCID: PMC4076024.

Ur Rahman A, Khan S, Khan M. Transport of trans-activator of transcription (TAT) peptide in tumour tissue model: evaluation of factors affecting the transport of TAT evidenced by flow cytometry. J. Pharm. Pharmacol. 2020;72(4):519–30.

Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J. Pharm. Sci. 2021;16(1):24–46.

Iyanda-Joel WO, Chinedu S, Iweala E, Onyejepu N, Nshiogu M. Phytochemical and antimycobacterial analysis of aqueous and ethanolic extracts of Annona muricata Linn (Soursop). Int. J. Infect. Dis. 2016;45:395-396. https://doi.org/10.1016/j.ijid.2016.02.846.

Iheagwam FN, Ogunlana OO, Ogunlana OE, Isewon I, Oyelade J. Potential Anti-Cancer Flavonoids Isolated From Caesalpinia bonduc Young Twigs and Leaves: Molecular Docking and In Silico Studies. Bioinform Biol Insights. 2019:117793221882137.

Bawa I, Uti DE, Itodo MO, Umoru GU, Zakari S, Obeten UN. Effect of Solvent Extracts of Tephrosia vogelii Leaves and Stem on Lipid Profile of Poloxamer 407-Induced Hyperlipidemic Rats. Ibnosina J Med Biomed Sci. 2022;14:135–144. Available from: https://doi.org/10.1055/s-0042-1760223.

Odutayo OE, Omonigbehin AE, Ogunlana OO, Afolabi IS. Biochemical Effects of Fermentation on Selected Phytochemicals, Enzymes and Antioxidant Activities in The Under-Utilized Seeds of Chrysophyllum albidum Linn and Terminalia catappa Linn. TJNPR [Internet]. 2023 Oct 29 [cited 2023 Dec 13];7(10). Available from: https://tjnpr.org/index.php/home/article/view/2845. https://doi.org/10.1096/fasebj.31.1_supplement.777.1.

NCI. Immune Checkpoint Inhibitors [Internet]. 2023 [cited 2023 Dec 6]. Available from: https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors