Biochemical Effects of Fermentation on Selected Phytochemicals, Enzymes and Antioxidant Activities in The Under-Utilized Seeds of Chrysophyllum albidum Linn and Terminalia catappa Linn http://www.doi.org/10.26538/tjnpr/v7i10.34
Main Article Content
Abstract
Chrysophyllum albidum Linn and Terminalia catappa Linn are both tropical plants. Fruits from these plants are eaten because of their edibility and delicious taste, and the seeds being under-utilized are mostly discarded. As the quest for food security increases, food processing methods that can improve under-utilized seeds for edibility are needed. This study’s aim was to examine the outcome of fermentation on the phytochemical and antinutrient constituents of these seeds. Their in vitro antioxidant and enzyme activities were also studied. Tannin, phytate, alkaloid and oxalate levels decreased significantly in the two seeds after fermentation (p<0.05). Fermented extracts from the seeds significantly decreased (p<0.05) in their ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. C. albidum seeds significantly increased (P<0.05) in ferric reducing assay property (FRAP) only, T. catappa seeds however showed a significant decrease (P<0.05) in TAC and FRAP at the end of fermentation. A remarkable reduction (P<0.05) was detected in the α-amylase activity of the fermented seeds of C. albidum, while a significant elevation (P<0.05) in the α-amylase activity of the fermented T. catappa seeds manifested. Lipase activity increased significantly (P<0.05) in the fermented seeds of both species. Significant elevation (P<0.05) of protease activity also manifested in the fermented C. albidum seeds. The distinct reduction in antinutrient status of the seeds, coupled with the increased digestive enzymes activities, was shown during fermentation, thus indicating fermentation as a tool to enhance the edibility and health outcomes of these under-utilized seeds.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Chen W. Demystification of fermented foods by omics technologies. Curr Opin Food Sci. 2022; 46:100845. Doi: 10.1016/j.cofs.2022.100845
Supreetha S, Dutta N. Therapeutic Properties of Fermented Foods and Beverages. In: Herbs, Spices, and Medicinal Plants for Human Gastrointestinal Disorders. Apple Academic Press; 2023; 227–256.
Marco ML, Sanders ME, Gänzle M, Arrieta MC, Cotter PD, De Vuyst L, Hill C, Holzapfel W, Lebeer S, Merenstein D, Reid G, Wolfe BE, Hutkins R. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat Rev Gastroenterol Hepatol. 2021; 18(3):196–208. Doi: 10.1038/s41575-020-00390-5
Babalola RO, Giwa OE. Effect of fermentation on nutritional and anti-nutritional properties of fermenting Soy beans and the antagonistic effect of the fermenting organism on selected pathogens. Int Res J Microbiol. 2012; 3(10):333–8.
Ojokoh AO, Daramola MK, Oluoti OJ. Effect of fermentation on nutrient and anti-nutrient composition of breadfruit (Treculia africana) and cowpea (Vigna unguiculata) blend flours. African J Agric Res. 2013; 8(27):3566–70.
Valdez-González FJ, Gutiérrez-Dorado R, García-Ulloa M, Cuevas-Rodríguez BL, Rodríguez-González H. Effect of fermented, hardened, and dehulled of chickpea (Cicer arietinum) meals in digestibility and antinutrients in diets for tilapia (oreochromis niloticus). Spanish J Agric Res. 2018; 16(1):1–10. Doi: 10.5424/sjar/2018161-11830
Adeyemo SM, Onilude AA, Olugbogi DO. Reduction of anti-nutritional factors of sorghum by lactic acid bacteria isolated from abacha-an african fermented staple. Front Sci. 2016; 6:25–30.
Afolabi IS, Marcus GD, Olanrewaju TO, Chizea V. Biochemical effect of some food processing methods on the health promoting properties of under-utilized Carica papaya seed. J Nat Prod. 2011; 4:17–24.
Afolabi IS, Bisi-Adeniyi TD, Adedoyin TR, Rotimi SO. Radiations and biodegradation techniques for detoxifying Carica papaya seed oil for effective dietary and industrial use. J Food Sci Technol. 2015; 52(10):6475–6483. Doi: 10.1007/s13197-014-1698-7
Afolabi IS, Nwachukwu IC, Ezeoke CS, Woke RC, Adegbite OA, Olawole TD, Martins OC. Production of a new plant-based milk from Adenanthera pavonina seed and evaluation of its nutritional and health benefits. Front Nutr. 2018; 5:9. Doi: 10.3389/fnut.2018.00009
Adebo JA, Njobeh PB, Gbashi S, Oyedeji AB, Ogundele OM, Oyeyinka SA, Adebo OA. Fermentation of cereals and legumes: Impact on nutritional constituents and nutrient bioavailability. Fermentation. 2022; 8(2):63. Doi: 10.3390/fermentation8020063.
Akinmoladun AC, Falaiye OE, Ojo OB, Adeoti A, Amoo ZA, Olaleye MT. Effect of extraction technique, solvent polarity, and plant matrix on the antioxidant properties of Chrysophyllum albidum G. Don (African Star Apple). Bull Natl Res Cent. 2022; 46(1):1–9. Doi: 10.1186/s42269-022-00718-y
Omeje KO, Iroha OK, Omeje HC, Apeh VO. Characterization and fatty acid pro fi le analysis of oil extracted from unexploited seed of African star apple ( Udara ). Oilseeds & fats, Crops & Lipids. 2019; 26;10. Doi: 10.1051/ocl/2019007
Makinde OJ, Aremu A, Alabi OJ, Jiya EZ, Ibe EA. Roasted African star apple (Chrysophyllum albidum) kernel meal improves growth performance of growing rabbits. Trop Subtrop Agroecosystems. 2017; 20(3):457–64.
Ikumapayi OM, Kazeem RA, Popoola LT, Laseinde OT, Afolalu SA, Nwala NC, Akinlabi SA, Akinlabi ET. Development and assessment of African star seed (Chrysophyllum albidum) oil-based cutting fluid in turning AA6061 using Taguchi grey relational approach. Int J Interact Des Manuf. 2022; 1–16. Doi: 10.1007/s12008-022-01142-2
Halilu EM, Ugwah-Oguejiofor CJ, Oduncuoğlu G, Matthias SG. Physicochemical, toxicity and antioxidant activity of Terminalia catappa kernel oil in mice. Pharmacognosy Res. 2023;15(1).:119-127. Doi: 10.5530/097484900304
Lawal AR, Olayinka BU, Abdulkareem KA, Abdulra’uf LB, Murthadah RA, Kayode O V. Proximate, minerals and phytochemical evaluation of pericarp and seed of Terminalia catappa fruit. Biosci J. 2022; 10(2):191–203.
Nguy LH, Hien LTM, Dao DTA. Effect of some Cultivation Factors and Extraction Methods on Terminalia Catappa L. Seed Oil. Int J Food Sci. 2022; 1356092. Doi: 10.1155/2022/1356092
Jabar JM, Odusote YA, Ayinde YT, Yılmaz M. African almond (Terminalia catappa L) leaves biochar prepared through pyrolysis using H3PO4 as chemical activator for sequestration of methylene blue dye. Results Eng. 2022; 14:100385. Doi: 10.1016/j.rineng.2022.100385
Esakki ES, Vivek P, Devi LR, Sarathi R, Sheeba NL, Sundar SM. Influence on electrochemical impedance and photovoltaic performance of natural DSSC using Terminalia catappa based on Mg-doped ZnO photoanode. J Indian Chem Soc. 2022; 99(12):100756. Doi: 10.1016/j.jics.2022.100756
Adeboye AS, Bamgbose A, Adebo OA, Okafor DC, Azeez TB. Physicochemical , functional and sensory properties of tapioca with almond seed ( Terminalia catappa ) flour blends. 2019; 13:182–190. Doi: 10.5897/AJFS2018.1739
Etienne DT, Ysidor KN, Adama C, Daouda S, Marius BGH. Assessement of Vitamins Contents of Almonds Deriving From Terminalia catappa L.(Combretaceae) Produced in Côte d’ivoire. Asian J Adv Agric Res. 2017; 2(3)1–8.
Odutayo OE, Adegboye BE, Omonigbehin EA Ogunlana OO and Afolabi IS. Characterization of potential probiotics isolated from fermented under-utilized Chrysophyllum albidum Linn kernels using microbiological , biochemical and molecular techniques. J. Phys. Conf. Ser. 2021; 2070 012036. Doi: 10.1088/1742-6596/2070/1/012036
Odutayo OE, Adegboye BE, Omonigbehin EA, Olawole TD, Ogunlana OO, Afolabi IS. Structural Transformation and Creativity Induced by Biological Agents during Fermentation of Edible Nuts from Terminalia catappa. Molecules 2021;26(19):5874. Doi: 10.3390/molecules26195874
Varadharajan V, Janarthanan UK, Krishnamurthy V. Physicochemical, phytochemical screening and profiling of secondary metabolites of Annona squamosa leaf extract. World J Pharm Res. 2012; 1(4):1143–1164.
Hammerschmidt PA, Pratt D. Phenolic antioxidants of dried soybeans. J Food Sci. 1978; 43(2):556–559. Doi: 10.1111/j.1365-2621.1978.tb02353.x
Prior RL, Wu X. Schaich K. Standardized Methods for the Determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005; 53(10):4290–4302. Doi: 10.1021/jf0502698
Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999; 64(4):555–559. Doi: /10.1016/S0308-8146(98)00102-2
Harborne JB. "Methods of plant analysis." Phytochemical methods: a guide to modern techniques of plant analysis. Dordrecht: Springer Netherlands, 1984; 1-36.
Ci KC, Indira G. Quantitative estimation of total phenolic , flavonoids , tannin and chlorophyll content of leaves of Strobilanthes Kunthiana ( Neelakurinji ). J Med Plants Stu. 2016; 4(4): 282-286.
Soetan KO. Comparative evaluation of phytochemicals in the raw and aqueous crude extracts from seeds of three Lablab purpureus varieties. African J Plant Sci. 2012; 6(15):410–415. Doi:10.5897/AJPS12.059
Maga JA. Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. J Agric Food Chem. 1982;30(1):1–9. Doi: 10.1021/jf00109a001
Sakat S, Juvekar AR, Gambhire MN. In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Int J Pharm Pharm Sci. 2010; 2(1):146-55.
Sharma DC, Shukla R, Ali J, Sharma S, Bajpai P, Pathak N. Phytochemical evaluation, antioxidant assay, antibacterial activity and determination of cell viability (J774 and THP1 alpha cell lines) of P. sylvestris leaf crude and methanol purified fractions. Exp Clin Sci. 2016; 15:85–94. Doi: 10.17179/excli2015-689
Bhalodia NR, Nariya PB, Acharya RN, Shukla VJ. In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn. Ayu. 2013; 34(2):209–214. Doi: 10.4103/0974-8520.119684
Omafuvbe BO, Shonukan OO, Abiose SH. Microbiological and biochemical changes in the traditional fermentation of soybean for ` soy-daddawa ’ ö Nigerian food condiment. 2000; 469–474. Doi:10.1006/fmic.1999.0332
Volmer DA, Curbani L, Parker TA, Garcia J, Schultz LD, Borges EM. Determination of titratable acidity in wine using potentiometric, conductometric, and photometric methods. J Chem Educ. 2017; 94(9):1296–1302. Doi:10.1021/acs.jchemed.6b00891
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193:265–75. Doi: 10.1016/S0021-9258(19)52451-6
Ho JC, Yin-Sze L. Isolation, identification and characterization of enzyme-producing lactic acid bacteria from traditional fermented foods. Bioscience Horizons: Int. J Stu Res. 2018; 11:hzy004. Doi: 10.1093/biohorizons/hzy004
Yong FM, Wood BJB. Biochemical changes in experimental soy sauce koji. Int J Food Sci Technol. 1977; 12(2):163–175. Doi: 10.1111/j.1365-2621.1977.tb00096.x
Olawole TD, Olalere AT, Adeyemi OA, Okwumabua O, Afolabi IS. Tannin and antioxidant status of fermented and dried Sorghum bicolor. Rasayan J Chem. 2019; 12:523–530.
Arbab SH, Chen Y, Peng C, Chen X, Imran M, Zhang H. Impact of fermentation on antinutritional factors and protein degradation of legume seeds: A review. Food Rev Int. 2023; 39(3):1227–1249. Doi: 10.1080/87559129.2021.1931300
Nkhata SG, Ayua E, Kamau EH, Shingiro JB. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr. 2018; 6(8):2446–5248. Doi: 1002/fsn3.846
Boonsong S, Klaypradit W, Wilaipun P. Antioxidant activities of extracts from five edible mushrooms using different extractants. Agric Nat Resour. 2016; 50(2):89–97. Doi: 10.1016/j.anres.2015.07.002
Chu X, Guo Y, Xu B, Li W, Lin Y, Sun X, et al. Effects of tannic acid, green tea and red wine on hERG Channels Expressed in HEK293 Cells. PLoS One. 2015; 10(12): e0143797. Doi: 10.1371/journal.pone.0143797
Popova A, Mihaylova D. Antinutrients in Plant-based Foods : A Review. Open Biotech J. 2019; 13(1):68–76.
Sokrab AM, Mohamed Ahmed IA, Babiker EE. Effect of fermentation on antinutrients, and total and extractable minerals of high and low phytate corn genotypes. J.Saudi Society Agr Sci 2012; 11(2):123-128. Doi: 10.1016/j.jssas.2012.02.002
Yuan P, Cui S, Li J, Du G, Chen J, Liu L. Microbial Production of Vitamins. In: Systems and Synthetic Biotechnology for Production of Nutraceuticals. Springer Singapore; 2019; 159–187.
Iheagwam FN, Nsedu EI, Kayode KO, Christianah O, Ogunlana OO, Chinedu SN. Bioactive Screening and In Vitro Antioxidant Assessment of Nauclea latifolia Leaf Decoction. AIP Conf. Proc. 2018; 1954:030015. Doi: 10.1063/1.5033395
Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W. Antioxidant properties of probiotic bacteria. Nutrients. 2017; 9(5):521. Doi:10.3390/nu9050521
Zhuang S, Tian L, Liu Y, Wang L, Hong H, Luo Y. Amino acid degradation and related quality changes caused by common spoilage bacteria in chill-stored grass carp (Ctenopharyngodon idella). Food Chem. 2023; 399:133989. Doi: 10.1016/j.foodchem.2022.133989
Sakpetch P, Benchama O, Masniyom P, Salaipeth L, Kanjan P. Physicochemical characteristics and flavor profiles of fermented fish sauce (budu) during fermentation in commercial manufacturing plant. J Food Sci Technol. 2022; 59:693-702. Doi: 10.1007/s13197-021-05064-x
Tsafrakidou P, Michaelidou A-M, G. Biliaderis C. Fermented cereal-based products: Nutritional aspects, possible impact on gut microbiota and health implications. Foods. 2020; 9(6):734. Doi: 10.3390/foods9060734
Yakubu CM, Sharma R, Sharma S, Singh B. Influence of alkaline fermentation time on in vitro nutrient digestibility, bio-& techno-functionality, secondary protein structure and macromolecular morphology of locust bean (Parkia biglobosa) flour. LWT. 2022; 161:113295. Doi: 10.1016/j.lwt.2022.113295
Olagunju AI, Ifesan BOT, Ibidunni A. Changes in nutrient and antinutritional contents of sesame seeds during fermentation. J Microbiol Biotechnol Food Sci . 2013; 2(6):2407–2410.
Barber L, Achinewhu SC, Ibiama EA. The microbiology of ogiri production from castor seed (Ricinus communis). Food Microbiol. 1988; 5(4):177–183. Doi: 10.1016/0740-0020(88)90016-0
Oyeyiola GP. Microbiology of the fermentation of locally produced ugba. Ecol Food Nutr. 1989; 23(4):287–291. Doi: 10.1080/03670244.1989.9991111
Leong RZL, Tee JJ, Lim LH, Teo S Sen. Decolourization of Crystal Violate and Methylene Blue Wastewater Using Anaerobic Fermented Bio-Waste. Water Conserv Sci Eng. 2023; 8:15. Doi: 10.1007/s41101-023-00189-w
Odibo FJC, Nwabunnia E, Osuigwe DI. Biochemical changes during fermentation of Telfairia seeds for ogiri production. World J Microbiol Biotechnol. 1990; 6:425–427. Doi: 10.1007/BF01202127
Odunfa SA. Biochemical changes during production of ogiri, a fermented melon (Citrullus vulgaris Schrad) product. Plant Foods Hum Nutr. 1983; 32:11–8. Doi: 10.1007/BF01093925
Odutayo OE, Omonigbehin EA, Olawole TD, Ogunlana OO, Afolabi IS. Fermentation Enhanced Biotransformation of Compounds in the Kernel of Chrysophyllum albidum. Molecules 2020; 25(24): 6021. Doi: 10.3390/molecules25246021