Evaluation of Biological Properties and Isolation of Metabolites of Lichens of Parmeliaceae Family from Himalayan Region of Nepal doi.org/10.26538/tjnpr/v3i8.3
Main Article Content
Abstract
The main purpose of this study is to evaluate the bioactive properties and chemical constituents of two lichens Usnea longissima and Parmelia nepalensis. Both lichens were subjected to sequential extraction with four different organic solvents. Total phenolic content (TPC) was evaluated by Folin Ciocalteu method while total flavonoid content (TFC) was evaluated by aluminum chloride colorimetric method. Antioxidant activities were evaluated by 2,2-Diphenyl- 1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay and α- amylase inhibition activities was evaluated by starch- iodine method. Antibacterial activity was evaluated by agar well diffusion method and cytotoxicity assay by Brine shrimp lethality assay. Results revealed that methanol and ethyl acetate extract of both lichen species have higher amounts of TPC and TFC. Both lichens showed potent antioxidant activities. The TPC and TFC content showed a positive correlation with the antioxidant activities. Furthermore, ethyl acetate extract of U. longissima and chloroform extract of P. nepalensis were found to be potent for the alpha amylase inhibition. All four fractions of U. longissima and P. nepalensis have inhibited Bacillus subtilis, Staphylococcus aureus and Escherichia coli, while Klebsiella pneumonia and Pseudomonas aeruginosa were found to be resistant to both lichens. Brine Shrimp lethality assays revealed that the hexane extract of U .longissima was found to be the most toxic among all tested extracts. Two known secondary metabolite usnic acid and evernic acid were isolated from both lichens. This study revealed that U. longissima and P. nepalensispossess potent bioactive properties and secondary metabolites as well.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Mikhailova IN. Populations of epiphytic lichens under stress conditions: survival strategies. The Lichenologist. 2007; 39(1):83-89.
Gupta V, Darokar M, Shanker K, Negi A, Srivastava S, Gupta M, Khanuja SPS. Rapid and sensitive HPLC method for the determination of polyphenols in various lichen species of Himalayan origin. J Liq Chromatogr Related Technol. 2007; 30(1):97-111.
Conti ME, Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment--a review. Environ. Pollut. 2001; 114(3):471-492.
Crawford SD. Lichens used in traditional medicine. Lichen secondary metabolites: Springer; 2019. 31-97 p.
Brisdelli F, Perilli M, Sellitri D, Piovano M, Garbarino JA, Nicoletti M, Bozzi A, Amicosante G, Celenza G. Cytotoxic activity and antioxidant capacity of purified lichen metabolites: an in vitro study. Phytother Res. 2013; 27(3):431-437.
Honda N, Pavan FR, Coelho R, de Andrade Leite S, Micheletti A, Lopes TI, Misutsu MY, Beatriz A, Brum RL, Leite CQ. Antimycobacterial activity of lichen substances. Phytomedicine. 2010;17(5):328-332.
Kumar J, Dhar P, Tayade AB, Gupta D, Chaurasia OP, Upreti DK, Arora R, Srivastava RB. Antioxidant capacities, phenolic profile and cytotoxic effects of saxicolous lichens from trans-Himalayan cold desert of Ladakh. PloS one. 2014;9(6):e98696.
Yılmaz M, Türk AÖ, Tay T, Kıvanç M. The Antimicrobial Activity of Extracts of the Lichen Cladonia foliacea and Its (–)-Usnic Acid, Atranorin, and Fumarprotocetraric Acid Constituents. Z Naturforsch C. 2004; 59(3-4):249-254.
Cocchietto M, Skert N, Nimis P, Sava G. A review on usnic acid, an interesting natural compound. Naturwissenschaften. 2002;89(4):137-146.
Seca A, Pinto D. Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int J Mol Sci. 2018; 19(1):263.
Boustie J, Grube M. Lichens—a promising source of bioactive secondary metabolites. Plant Genet Resour. 2005; 3(2):273-287.
Frisvad JC, Andersen B, Thrane U. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res. 2008; 112(2):231-240.
Bačkorová M, Jendželovský R, Kello M, Bačkor M, Mikeš J, Fedoročko P. Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol in vitro. 2012; 26(3):462- 8.
Kowalski M, Hausner G, Piercey-Normore MD. Bioactivity of secondary metabolites and thallus extracts from lichen fungi. Mycoscience. 2011; 52(6):413-418.
Xu M, Heidmarsson S, Olafsdottir ES, Buonfiglio R, Kogej T, Omarsdottir S. Secondary metabolites from cetrarioid lichens: chemotaxonomy, biological activities and pharmaceutical potential. Phytomedicine. 2016; 23(5):441- 459.
Kumar SK, Banskota AH, Manandhar MD. Isolation and identification of some chemical constituents of Parmelia nepalensis. Planta med. 1996; 62(01):93-94.
Safe S, Safe LM, Maass WS. Sterols of three lichen species: Lobaria pulmonaria, Lobaria scrobiculata and Usnea longissima. Phytochemitry. 1975; 14(8):1821-1823.
Gómez-Serranillos MP, Fernández-Moriano C, González- Burgos E, Divakar PK, Crespo A. Parmeliaceae family: phytochemistry, pharmacological potential and phylogenetic features. RSC Adv. 2014;4(103):59017-47.
Kumar KC , Müller K. Lichen metabolites. 1. Inhibitory action against leukotriene B4 biosynthesis by a non-redox mechanism. J Nat Prod. 1999;62(6):817-20.
Lee KA, Kim MS. Antiplatelet and antithrombotic activities of methanol extract of Usnea longissima. Phytother Res. 2005; 19(12):1061-1064.
Mitrović T, Stamenković S, Cvetković V, Tošić S, Stanković M, Radojević I, Stefanović O, Comić L, Dačić D, Curčić M, Marković S. Antioxidant, antimicrobial and antiproliferative activities of five lichen species. Int J Mol Sci. 2011;12(8):5428-48.
Wong SP, Leong LP, Koh JHW. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006; 99(4):775-783.
Mensor LL, Menezes FS, Leitão GG, Reis AS, dos Santos TC, Coube CS, Leitão SG. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytothe Res. 2001; 15(2):127-130.
Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compost Anal. 2006; 19(6- 7):669-675.
Hossain SJ, Tsujiyama I, Takasugi M, Islam MA, Biswas RS, Aoshima H. Total phenolic content, antioxidative, anti- amylase, anti-glucosidase, and antihistamine release activities of Bangladeshi fruits. Food Sci Technol Res. 2008; 14(3):261-268.
Singh R, Shushni MA, Belkheir A. Antibacterial and antioxidant activities of Mentha piperita L. Arab J Chem. 2015; 8(3):322-328.
Olowa LF, Nuñeza OM. Brine shrimp lethality assay of the ethanolic extracts of three selected species of medicinal plants from Iligan City, Philippines. Int Res J Biological Sci. 2013; 2(11):74-77.
Atalay F, HALICI MB, Mavi A, Cakir A, ODABAŞOĞLU F, Kazaz C, ASLAN A, ÜFREVIOĞLU ӦİK Antioxidant phenolics from Lobaria pulmonaria (L.) Hoffm. and Usnea longissima Ach. lichen species. Turk J Chem 2011; 35(4):647-661.
Choudhary MI, Azizuddin, Jalil S. Rahman A, Bioactive phenolic compounds from a medicinal lichen, Usnea longissima. Phytochemistry. 2005; 66(19):2346-50
Pokorný J. Are natural antioxidants better–and safer–than synthetic antioxidants? Eur J Lipid Sci Tech. 2007; 109(6):629-642.
Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC complement Altern Med. 2012; 12(1):221.
Shivanna R, Parizadeh H, Garampalli RH. Screening of lichen extracts for in vitro antidiabetic activity using alpha amylase inhibitory assay. Int J Biol Pharma Res. 2015; 6(5):364-367.
Thadhani VM, Karunaratne V. Potential of lichen compounds as antidiabetic agents with antioxidative properties: A review. Oxid Med Cell longev. 2017; 2017.
Kim J-S, Kwon C-S, SoN KH. Inhibition of alpha- glucosidase and amylase by luteolin, a flavonoid. Biosci, Biotech Biochem. 2000; 64(11):2458-2461.
Gökalsın B, Sesal NC. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa. World J Microbiol Biotechnol. 2016; 32(9):150.
Doorduijn DJ, Rooijakkers SH, van Schaik W, Bardoel BW. Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology. 2016;221(10):1102-9.
Mesaros N, Nordmann P, Plésiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, Van Laethem Y, Jacobs F, Lebecque P, Malfroot A, Tulkens PM, Van Bambeke F. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect. 2007; 13(6):560-578.
Maciąg-Dorszyńska M, Węgrzyn G, Guzow-Krzemińska B. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiol lett. 2014;353(1):57-62.
Swaney SM, Aoki H, Ganoza MC, Shinabarger DL. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother. 1998; 42(12):3251-3255.
Paudel B, Datta Bhattarai H, Prasad Pandey D, Seoun Hur J, Gyu Hong S, Kim I-C, et al. Antioxidant, antibacterial activity and brine shrimp toxicity test of some mountainous lichens from Nepal. Biol Res. 2012; 45(4):387-391.
Ding D, Jin J, Yan B, Liu C-b. Brins shrimp lethality bioassay of six lichens constituents. Chin Pharm J. 1994; 04:211-213.