Phytochemical and In-vivo Antimalarial Investigations of Dichrostachys cinerea (L.) Wight & Arn. (Fabaceae) Root Bark


  • Labake A. Fadipe Department of Chemistry, School of Physical Sciences, Federal University of Technology, Minna, Nigeria
  • Chinedu Ajemba Department of Chemistry, School of Physical Sciences, Federal University of Technology, Minna, Nigeria
  • Bilqis A. Lawal Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
  • Augustine A Ahmadu Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
  • Gabriel F. Ibikunle Department of Chemistry, School of Physical Sciences, Federal University of Technology, Minna, Nigeria


Root bark, Phenolic derivative, Parasitemia, Dichrostachys cinerea, Antimalarial


The various parts of Dichrostachys cinerea (L.) are ethnomedicinally useful in the management of malaria. This study investigates the in-vivo antimalarial potentials of the ethanol extract of D. cinerea root bark and its fractions, as well as, the isolation and characterization of a phytoconstituent from one of the active fractions. Phytochemical, acute toxicity and antimalarial potentials of the crude ethanol extract of D. cinerea (ED) its chloroform- (EDC), ethyl acetate- (EDE) and butanol- (EDB) fractions were evaluated. The extract, ED and its fractions revealed no toxicity in mice, up to 2000 mg/kg. In-vivo antimalarial testing of extract and fractions against P. berghei using the 4-day suppressive testing revealed that fractions EDC and EDB at 600 mg/kg significantly (p < 0.05) suppressed the level of parasitemia, prolonged the mean survival time (p < 0.05) and protected infected mice against reductions in rectal temperature (p > 0.05), body weights (p > 0.05) and packed cell volume (p < 0.05); all in comparison with Chloroquine at 25 mg/kg/day. Application of different chromatographic and spectroscopic techniques to fraction EDB led to the isolation and characterization of Methyl 2, 3-dihydroxy-4-methoxybenzoate (a derivative of methyl gallate). These findings revealed that the strong presence of phenolic constituents, either acting singly or synergistically with other bioactive compounds probably contributed to the antimalarial activity of factions EDC and EDB and hence, the folkloric use of D. cinerea root bark as an antimalarial agent; an indication that the plant might be a potential source of novel antimalarial agent(s). 


Adjanohoun EJ and Ake-Assi L. Contributions to the identification of medicinal plants in Ivory Coast. Abidjan: Centre national de Floristique, Abidjan, CRESS; 1979. 358 p.

Agbonlahor O, Godswill N, Raymond O. Analgesic and antiinflammatory effects of the aqueous leaf extract of Dichrostachys cinerea. J Appl Sci Environ. 2017; 1(5):821- 825.

Kambizi L and Afolayan AJ. An ethnobotanical study of plants used for the treatment of sexually transmitted diseases (Njovhera) in Guruve District, Zimbabwe. J Ethnopharmacol. 2001; 77(1):5-9.

Mishal HB. Screening of anti-snake venom activity of Dichrostachys cinerea (L.) Wight and Arn. J Nat Rem. 2002; 2(1):93-95.

Ramya KB and Thaakur SR. Evaluation of neuropharmacological effects of Dichrostachys cinerea roots. Int J Pharm Sci Nanotech. 2009; 1(4):367-374.

Vennapoosa S, Sandeep D, Surnathi K, Kumar NS. Phytochemical and antimicrobial evaluations of Dichrostachys cinerea. Int Res J Pharm. 2013; 4(1):106-111.

Aworet-Samseny RR, Souza A, Kpahe F, Konate K, Datte JY. Dichrostachys cinerea (L.) Wight et. Arn (Mimosaceae) hydro-alcoholic extract action on the contractility of tracheal smooth muscle isolated from guinea-pig. BMC Complement and Altern Med. 2011; 11(23):1186-1472.

Irie-N’guessan GA, Zinzendorf NY, Djatchi RA, Kablan L, Kouakou SL, Aka AL, Djobo AW. Anti-infective assessment of Dichrostachys cinerea root bark, an Ivorian anti-asthmatic herbal. Adv Pharmacol Pharm. 2018a; 6(3):72-76.

Irie-N’guessan AG, Kouakou SL, Koua KBD, Effo KE, Djadji ATL, Diarrassouba N, Kouakou-Siransy NG. Anticonvulsant and analgesic assessment of Dichrostachys cinerea root bark, An Ivorian anti-asthmatic herbal, in mice. J Pharmacol Clin Res. 2018b; 6(3):1555687

Nguta JM and Mbaria JM. Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. J Ethnopharmacol. 2013; 148(3):988-992.

Mwangi GG, Wagacha JM, Nguta JM, Mbaria JM. Brine shrimp cytotoxicity and antimalarial activity of plants traditionally used in treatment of malaria in Msambweni district. Pharm Biol. 2015; 53(4):588-593.

Kweyamba PA, Zofou D, Efange N, Assob JCN, Kitau J, Nyindo M. In-vitro and in-vivo studies on anti-malarial activity of Commiphora africana and Dichrostachys cinerea used by Maasai in Arusha, Tanzania. Malar J. 2019; 18:119

Eisa MM, Almagboul AZ, Omer MEA, Elegami AA. Antibacterial activity of Dichrostachys cinerea. Fitoterapia 2000; 71 (3):324-327.

Banso A and Adeyemo SO. Evaluation of antibacterial properties of tannins isolated from Dichrostachys cinerea. Afr J Biotechnol. 2007; 6(15):1785-1787.

Jayakumar S, Srinivasa RGH, Anbu J, Ravichandiran V. Antidiarrhoeal activity of Dichrostachys cinerea (L.) Wight and Arn. Int J Pharm Pharm Sci. 2011; 3 (suppl. 3):61-63.

Kolapo AL, Okunade MB, Adejumobi JA, Ogundiya MO. In-vitro antimicrobial activity and phytochemical composition of Dichrostachys cinerea (L.). Med Aromat Plant Sci Biotechnol. 2008; 2(2):131-133.

Bolleddu R, Vekatesh S, Rao M, Shyamsunder R. Investigation of the pharmacognostical, phytochemical and antioxidant studies various fractions of Dichrostachys cinerea root. J Nat Sci Med. 2019; 2(3):141.

Susithra E and Jayakumari S. Analgesic and antiinflammatory activities of Dichrostachys cinerea (L.) Wight and Arn. Drug Invent Today 2018; 10:361-366.

UNICEF. Malaria: a major cause of child death and poverty in Africa. New York: 2004.

Sougoufara S, Doucouré S, Sembéne PMB, Harry M, Sokhna C. Challenges for malaria vector control in sub-Saharan Africa: Resistance and behavioral adaptations in Anopheles populations. J Vector Borne Dis. 2017; 54(1):4-15.

Zeleke G, Kebebe D, Mulisa E, Gashe F. In-vivo antimalarial activity of the solvent fractions of fruit rind and root of Carica papaya Linn (Caricaeae) against Plasmodium berghei in mice. J Parasitol Res. 2017; 2017: Article ID 3121050.

Renganayagi R. Pharmacognostic, phytochemical and bioactivity studies on Dichrostachys cinerea (L.) Wight and Arn. Tamil Nadu, India: Unpublished PhD thesis, Department of Botany, University of Bharathiar; 2013. 21- 23, 28-31, 33, 47, 71 p.

Joshi KC and Sharma T. Triterpenoids and some other constituents from Dichrostachys cinerea. Phytochem Lett. 1974; 13:2010 - 2011

Adikay S, Koganti B, Prasad KVSRG. Effect of alcoholic extract of roots of Dichrostachys cinerea (L.) Wight and Arn against cisplatin-induced nephrotoxicity in rats. Nat Prod Rad. 2009; 8(1):12-18.

Irie-N’guessan G, Dade J, Champy P, Siransy-Kouakou, NG, Leblais V. Isolation and spasmolytic evaluation of new alkaloids from Dichrostachys cinerea (L.) Wight et. Arn (Fabaceae). J Pharm Pharmacol. 2013; 4(9):684-688.

Dade JME, Irie-N’guessan G, Komlaga T, Say M, Okpekon TA, Boti JB, Kablan BJ, Bamba EHS. Pyrrolidine alkaloids and their glycosylated derivatives from the root bark of Dichrostachys cinerea (L.) Wight & Arn (Fabaceae). Phytochem Lett. 2016; 16:268-276.

Salah H, Honaida E, Abdelkarim M. Partial characterization of a flavone from Sudanese Dichrostachys cinerea (L.) Wight & Arn (Mimosaceae). Pharm Chem J. 2019; 6(2):39- 43.

Trease GE and Evans MC. Textbook of pharmacognosy (12th ed.). London: Tindall; 2002. 343-348 p.

Ekwueme FN, Nwodo OF, Joshua PE, Nkwocha C, ElukaPE. Qualitative and quantitative phytochemical screening of the aqueous leaf extract of Senna mimosoides: Its effect in invivo leukocyte mobilization induced by inflammatory stimulus. Int J Curr Microbiol Appl Sci. 2015; 4(5):1176- 1188.

National Research Council of the National Academies. Guide for the care and use of laboratory animals (8th ed.). Washington DC, USA: The National Academies Press; 2011. 1-246 p.

The Organization of Economic Co-operation and Development (OECD). The OECD guideline for testing of chemicals, acute oral toxicity – up – and down procedure 425. France: adopted 2001. 1-26 p.

Nardos A and Makonnen E. In-vivo antiplasmodial activity and toxicological assessment of hydroethanolic crude extract of Ajuga remota. Malar J. 2017; 16(25):DOI 10.1186/s12936-017-1677-3

Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov. 2004; 3(6):509-520.

Peter W, Portus H, Robinson L. The four-day suppressive in vivo antimalarial test. Ann Trop Med Parasit. 1975; 69:155- 171.

Silverstein RM, Bassler GC, Morrill TC. Spectrometric identification of organic compounds (5th ed.). New York: John Wiley and sons; 1991. 22-23, 28-29, 181, 183, 240, 242 p.

Mohan J. Organic spectroscopy: principles and applications. (2nd ed.). New Delhi: Narosa publishing house; 2010; 207, 211, 216, 392, 398, 411 p.

Rosas EC, Correa LB, Henriques MDG. Anti-inflammatory properties of Schinus terebinthifolius and its use in arthritic conditions. In: Watson RR, Preedy VR (Eds.) Bioactive food as dietary interventions for arthritis and related inflammatory diseases 2nd ed. Elsevier Inc.; 2019. 489-505 p.

Kifle ZD, Adinew GM, Megistie MG, Gurmu AE, Enyew EF, Goshu BT, Amare GG. Evaluation of antimalarial activity of methanolic root extract of Myrica salicifolia A. Rich. (Myricaceae) against Plasmodium berghei-infected mice. J Evid Based Integr Med. 2020; 25: 2515690X20920539.

Cowan MM. Plant products as antimicrobial agents. Clin. Microbiol Rev. 1999; 12(4):564-582.

Odeghe OB, Uwakwe A, Monago C. Antiplasmodial activity of methanolic stem bark extract of Anthocleista grandiflora in mice. Int J Appl Sci Technol. 2012; 2(4):142-148.

Munoz V, Sauvain M, Bourdy G, Callapa J, Bergeron S, Rojas I, Bravo J, Balderrama L, Ortiz B, Gimenez A, Deharo E. A search for natural bioactive compounds in Bolivia through a multidisplinary approach. Part I: evaluation of the antimalarial activity of plants used by the Chacobo Indians. J Ethnopharmacol. 2000; 69:127-137.

Clayton DH and Wolf ND. The adaptive significance of selfmedication. Trends Ecol Evol. 1993; 8(2):60-63.

Adugna M, Feyera T, Tadesse W, Admasu P. In-vivo antimalarial activity of crude extract of aerial part of Artemisia abyssinica against Plasmodium berghei in mice. Glob J Pharmacol. 2014; 8(3):460-468.

Ural IO, Kayalar H, Durmuskahya C, Cavus I, Ozbilgin A. In vivo antimalarial activity of methanol and water extracts of Eryngium thorifolium Boiss (Apiaceae Family) against P. berghei in infected mice. Trop J Pharm Res. 2014; 13:1313- 1317.

Bahtiar A, Vichitphan K, Han J. Leguminous plants in the Indonesian archipelago: traditional uses and secondary metabolites. Nat Prod Commun. 2017; 12(3):461-472.

Misganaw D, Amare GG, Mengistu G. Chemosuppressive and curative potential of Hypoestes forskalei against Plasmodium berghei: Evidence for in vivo antimalarial activity. J Exp Pharmacol. 2020; 12:313-323.

Kariuki D, Miaron JO, Mugweru J, Omasa LK. Antibacterial activity of five medicinal plants used by the Maasai people of Kenya. Int J Hum Arts Med Sci. 2014; 2:1-6.

Mohammed T, Erko B, Giday M. Evaluation of antimalarial activity of leaves of Acokanthera schimperi and Croton macrostachyus against Plasmodium berghei in Swiss albino mice. BMC Compl Altern Med. 2014; 14:314.

Hintsa G, Sibhat GG, Karim A. Evaluation of antimalarial activity of the leaf latex and TLC isolates from Aloe megalacantha Baker in Plasmodium berghei infected mice. Evid based Complement Alternat Med. 2019; 2019:6459498.

Alehegn AA, Yesufu JS, Birru EM. Antimalarial activity of crude extract and solvent fractions of the leaves of Bersama abyssinica Fresen. (Melianthaceae) against Plasmodium berghei infection in Swiss albino mice. Evid-Based Compl Altern Med. 2020; 2020:9467359.

Ogbeide OK, Dickson VO, Jebba RD, Owhiroro DA, Olaoluwa MO, Imieje VO, Erharuyi O, Owolabi BJ, Fasinu SP, Falodun A. Antiplasmodial and acute toxicity studies of fractions and cassane-type diterpenoids from the stem bark of Caesalpinia pulcherrima (L.) Sw. Trop J Nat Prod Res. 2018: 2(4):179-184.

Ogbeide OK, Okhomina OK, Omeregie IG, Unuigbe CA, Ighodaro A, Akhigbe IU, Iheanacho M, Akubuiro PC, Solomon A, Irabor EEI, Owolabi J, Falodun A. Antimalarial, ferric reducing antioxidant power and elemental analysis of Caesalpinia pulcherrima leaf extract. J Chem Soc Nig. 2020; 45(4):704-711.

Adumanya OCU, Uwakwe AA, Essien EB. Antiplasmodial activity of methanol leaf extract of Salacia senegalensis Lam (Dc) in albino mice infected with chloroquine-sensitive Plasmodium berghei (NK65). Int J Ethnopharmacol. 2004; 1(1):2-6.

Asnake S, Teklehaymanot T, Hymete A, Erko B, Giday M. Evaluation of the antiplasmodial properties of selected plants in Southern Ethiopia. BMC Compl Altern Med. 2015; 15(1):1-12.

Okokon J, Koofreh AD, Bala AA. Antipyretic and antimalarial activities of Solenostemom monostachyus. Pharm Biol. 2016; 54(4):648-653.

Habte G, Nedi T, Assefa S. Antimalarial activity of aqueous and 80% methanol crude seed extracts and solvent fractionsof Schinus molle Linnaeus (Anacardiaceae) in Plasmodiumberghei-infected mice. J Trop Med. 2020; Article ID





How to Cite

Fadipe, L. A., Ajemba, C., Lawal, B. A., Ahmadu, A. A., & Ibikunle, G. F. (2020). Phytochemical and In-vivo Antimalarial Investigations of Dichrostachys cinerea (L.) Wight & Arn. (Fabaceae) Root Bark: Tropical Journal of Natural Product Research (TJNPR), 4(11), 1007–1014. Retrieved from