Chemical Profiling of Farsetia aegyptia Turra and Farsetia longisiliqua Decne. and their Chemosystematic Significance

doi.org/10.26538/tjnpr/v4i11.18

Authors

  • Mona M. Marzouk Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt
  • Ahmed Elkhateeb Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt
  • Mona El-Shabrawy Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt
  • Mai M. Farid Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt
  • Salwa A. Kawashty Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt
  • El-Sayed S. AbdelHameed Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt
  • Sameh R. Hussein Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt

Keywords:

Flavonoids chemosystematics, Glucosinolates, LC-ESI-MS, Farsetia, Brassicaceae

Abstract

The genus Farsetia Turra belongs to the family Brassicaceae Burnett and has approximately 30 accepted species distributed worldwide. Amongst them, Farsetia aegyptia Turra and Farsetia longisiliqua Decne. are two common species characteristic to the Egyptian flora. The present study considers the first characterization of the chemical constituents of F. longisiliqua aiming to compare with those identified from the medicinal species (F. aegyptia). Additionally, the chemosystematic relationships between the two studied species were evaluated and highlight the medicinal importance for F. longisiliqua. The chemical profiling of their aqueous methanol extracts were carried out using LC-ESI-MS technique and afforded 54 compounds belonging to different chemical groups. Flavonoids were the major constituents and were represented by 32 compounds (two C-glycosyl flavone, four flavones and 26 flavonols). Their structural variations and common constituents confirmed the chemosystematic significance of the two species.
Moreover, the flavonoid profiles showed major common constituents between the two investigated species, which predicted the medicinal importance of F. longisiliqua.

Author Biography

El-Sayed S. AbdelHameed, Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt

Laboratory of Medicinal Chemistry, Theodor Bilharz Research Institute, Giza, Egypt

References

Kirtikar KR and Basu BD. Indian Medicinal Plants. 2nd ed., vol II, Dehradun, India; Bishen Singh Mahendra Pal Singh., 1975. 894-895 p.

Al-Shehbaz IA, Beilstein MA, Kellogg EA. Systematics and phylogeny of the Brassicaceae (Cruciferae): An overview. Plant Syst Evol. 2006; 259:89.

Boulos L. Flora of Egypt. Cairo; Al-Hadara Pub. 1999; 1.

Tackolm V. Student's Flora of Egypt, 2nd Ed., Cairo University. 1974. 183 p.

Abdelhady MI, Abdel Motaal A, Beerhues L. Total phenolic content and antioxidant activity of standardized extracts from leaves and cell cultures of three Callistemon species. AJPS. 2011; 2:847-850.

Mitchell-Olds T, Al-Shehbaz IA, Koch MA, Sharbel TF. Crucifer evolution in the post-genomic era. In: Henry RJ (ed) Plant diversity and evolution. CAB Internat Oxfordshire UK. 2005. 119-137p.

Atta EM, Hashem AI, Eman RE, A novel flavonoid compound from F. aegyptia and its antimicrobial activity. Chem Nat Comp. 2013; 49:432-436.

Shahat AA, Cuyckens F, Wang W, Abdel-Shafeek KA, Husseiny HA, Apers S, Van Miert S, Pieters L, Vlietinck AJ, Claeys M. Structural characterization of flavonol di-Oglycosides from Farsetia aegyptia by electrospray ionization and collision-induced dissociation mass spectrometry. Rap Commun Mass Spect. 2005; 19(15):2172-2178.

Marzouk MM, Kawashty SA, Saleh NAM, Al-Nowaihi ASM. A new kaempferol trioside from F. aegyptia. Chem Nat Comp. 2009; 45:483-486.

El-Sharkawy E, Azza AM, Emad MA. Cytotoxity of New Flavonoid Compound Isolated from F. aegyptia. Int JPharm Sci Inven. 2013; 2:23.

Marzouk MM, Hussein SR, Elkhateeb A, Farid MM, Ibrahim LF, Abdel-Hameed ES. Phenolic profiling of Rorippa palustris (L.) Besser (Brassicaceae) by LC-ESIMS: Chemosystematic significance and cytotoxic activity. Asian Pac J Trop Dis. 2016; 6(8):633-637.

Marzouk MM, Al-Nowaihi ASM, Kawashty SA, Saleh NA. Chemosystematic studies on certain species of the family Brassicaceae (Cruciferae) in Egypt. Biochem Syst Ecol. 2010; 38:680-685.

Hussein SR, Abdel Latif RR, Marzouk MM, Elkhateeb A, Mohammed RS, Soliman AAF, Abdel-Hameed ES. Spectrometric analysis, phenolics isolation and cytotoxic activity of Stipagrostis plumosa (Family Poaceae). Chem Pap. 2018; 72:29-37.

Ibrahim LF, Elkhateeb A, Marzouk MM, Hussein SR, Abdel-Hameed ES, Kassem MES. Flavonoid investigation, LC-ESI-MS profile and cytotoxic activity of Raphanus raphanistrum L. (Brassicaceae). J Chem Pharm Res. 2016; 8:786-793.

Kawashty SA, Hussein SR, Marzouk MM, Ibrahim LF, Helal MMI, El Negomy SIM. Flavonoid constituents from Morettia philaena (Del.) DC and their antimicrobial activity. J Appl Sci Res. 2012; 8:1484-1489.

Stintzing FC, Schieber A, Carle R. Identification of betalains from yellow beet (Beta vulgaris L.) and cactus pear [Opuntia ficus-indica (L.) Mill.] by high-performance liquid chromatography-electrospray ionization mass spectrometry. J Agric Food Chem. 2002; 50(8):2302-2307.

Felipe DF, Brambilla LZS, Porto C, Pilau EJ, Cortez DAG. Phytochemical analysis of Pfaffia glomerata inflorescences by LC-ESI-MS/MS. Molecules 2014; 19:15720-15734.

Taamalli A, Arráez-Román D, Abaza L, Iswaldi I, Fernández- Gutiérrez A, Zarrouk M, Segura-Carretero A. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem Anal. 2015; 26:320-

Bianco G, Pascale R, Lelario F, Bufo SA, Cataldi TRI. Investigation of glucosinolates by mass spectrometry. In Mérillon JM, Ramawat KG (eds.), Glucosinolates, Reference Series in Phytochemistry, Springer Internat Publ. 2017. 431-461 p.

Al Gendy AA and Lockwood GB. GC-MS analysis of volatile hydrolysis products from glucosinolates in Farsetia aegyptia var. ovalis. Flavour Fragr J. 2003; 18(2):148-152.

Gil V and Macleod AJ. Some glucosinolates of Farsetia aegyptia and Farsetia ramosissima. Phytochem. 1980; 19(2):227-231.

Sasaki K, Neyazaki M, Shindo K, Ogawa T, Momose M. Quantitative profiling of glucosinolates by LC-MS analysis reveals several cultivars of cabbage and kale as promising sources of sulforaphane. J Chromatogr B Anal Technol Biomed Life Sci. 2012; 903:171-176.

Geng P, Sun J, Zhang M, Li X, Harnly JM, Chen P. Comprehensive characterization of C glycosyl flavones in wheat (Triticum aestivum L.) germ using UPLC-PDAESI/HRMSn and mass defect filtering. J Mass Spect. 2016; 51(10):914-930.

March R and Miao XS. A fragmentation study of kaempferol using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution. Int J Mass Spectrom. 2004; 231: 157-167.

Schmidt S, Zietz M, Schreiner M, Rohn S, Kroh LW, Krumbein A. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/ electrospray ionization multi-stage mass spectrometry. Rapid Commun Mass Spect. 2010; 24(14):2009-2022.

ElKhateeb A, Hussein SR, Salem MM, El Negoumy SIM. LC-ESI-MS analysis, antitumor and antiviral activities of Bosica senegalensis aqueous methanolic extract. Egypt J Chem. 2019; 62(1):77-83.

Hwang IM, Park B, Dang YM, Kim SY, Seo HY. Simultaneous direct determination of 15 glucosinolates in eight Brassica species by UHPLC-Q-Orbitrap-MS. Food Chem. 2019; 282:127-133.

Rochfort SJ, Trenerry VC, Imsic M, Panozzo J, Jones R. Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MSn fragmentation. Phytochem. 2008; 69(8):1671-1679.

Maldini M, Baima S, Morelli G, Scaccini C, Natella F. A liquid chromatography mass spectrometry approach to study “glucosinoloma” in broccoli sprouts. J Mass Spect. 2012; 47(9):1198-1206.

Farid MM, Marzouk MM, Hussein SR, Elkhateeb A, Abdel-Hameed ES. Comparative study of Posidonia oceanica L.: LC/ESI/MS analysis, cytotoxic activity and chemosystematic significance. J Mater Environ Sci. 2018; 9(6):1676-1682.

Zengin G, Mahomoodally MF, Paksoy MY, Picot-Allain C, Glamocilja J, Sokovic M, Diuzheva A, Jekő J, Cziáky Z, Rodrigues MJ, Sinan KI, Custodio L. Phytochemical characterization and bioactivities of five Apiaceae species: Natural sources for novel ingredients. Ind Crop Prod. 2019; 135:107-121.

Bell L, Oruna-Concha MJ, Wagstaff C. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chem. 2015; 172:852-861.

Vallejo F, Tomás-Barberán FA, Ferreres F. Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography–UV diode-array detection–electrospray ionisation mass spectrometry. J Chromatogr A. 2004; 1054(1-2):181-19.

Prescott TA, Kite GC, Porter EA, Veitch NC. Highly glycosylated flavonols with an O-linked branched pentasaccharide from Iberis saxatilis (Brassicaceae). Phytochem. 2013; 88:85-91. 35. Papetti A, Milanese C, Zanchi C, Gazzani G. HPLC–DAD–

ESI/MSn characterization of environmentally friendly

polyphenolic extract from Raphanus sativus L. var.“Cherry

Belle” skin and stability of its red components. Food Res

Int. 2014; 65:238-246.

Ediage EN, Di Mavungu JD, Scippo ML, Schneider YJ,

Larondelle Y, Callebaut A, Robbens J, Van Peteghem C,

De Saeger S. Screening, identification and quantification of

glucosinolates in black radish (Raphanus sativus L. niger)

based dietary supplements using liquid chromatography

coupled with a photodiode array and liquid

chromatography-mass spectrometry. J Chromatogr A. 2011;

(28):4395-4405.

Hamed AI, Said RB, Kontek B, Al-Ayed AS, Kowalczyk

M, Moldoch J, Stochmal A, Olas B. LC-ESI-MS/MS

profile of phenolic and glucosinolate compounds in samh

flour (Mesembryanthemum forsskalei Hochst. ex Boiss) and

the inhibition of oxidative stress by these compounds in

human plasma. Food Res Int. 2016; 85:282-290.

Bakr RO, Bishbishy E, Helmy M. Profile of bioactive

compounds of Capparis spinosa var. aegyptiaca growing

in Egypt. Rev Bras Farmacogn. 2016; 26(4):514-520.

Marzouk MM, Hussein SR, Elkhateeb A, El-shabrawy M,

Abdel-Hameed ESS, Kawashty SA. Comparative study of

Mentha species growing wild in Egypt: LC-ESI-MS

analysis and chemosystematic significance. J Appl Pharm

Sci. 2018; 8:116-122.

Qin Y, Gao B, Shi H, Cao J, Yin C, Lu W, Yu L, Cheng Z.

Characterization of flavonol mono-, di-, tri-and tetra-Oglycosides by ultra-performance liquid chromatographyelectrospray ionization-quadrupole time-of-flight mass

spectrometry and its application for identification of

flavonol glycosides in Viola tianschanica. J Pharm Biomed

; 142:113-124.

Marzouk MM, Ibrahim LF, El-Hagrassi AM, Fayed DB,

Elkhateeb A, Abdel-Hameed ESS, Hussein SR. Phenolic

profiling and anti-Alzheimer’s evaluation of Eremobium

aegyptiacum. Orient Pharm Exp Med. 2020; 20:233-241.

Elkhateeb A, El-Shabrawy M, Abdel-Rahman RF, Marzouk

MM, El-Desoky AH, Abdel-Hameed ESS, Hussein SR. LCMS-based metabolomic profiling of Lepidium coronopus

water extract, anti-inflammatory and analgesic activities,

and chemosystematic significance. Med Chem Res. 2019;

(4):505-514.

Bianco G, Lelario F, Battista FG, Bufo SA, Cataldi TRI.

Identification of glucosinolates in capers by LC-ESI-hybrid

linear ion trap with Fourier transform ion cyclotron

resonance mass spectrometry (LC-ESI-LTQ-FTICR MS)

and infrared multiphoton dissociation. J Mass Spect. 2012;

:1160-1169.

Ren Q, Wu C, Ren Y, Zhang J. Characterization and

identification of the chemical constituents from tartary

buckwheat (Fagopyrum tataricum Gaertn) by high

performance liquid chromatography/photodiode array

detector/linear ion trap FTICR hybrid mass spectrometry.

Food Chem. 2013; 136(3-4):1377-1389.

Clarke DB. Glucosinolates, structures and analysis in

food. Anal Meth. 2010; 2(4):310-325.‏

Shakeri A, D’Urso G, Taghizadeh SF, Piacente S, Norouzi

S, Soheili, V, Asili J, Salarbashi D. LCESI/LTQOrbitrap/MS/MS and GC–MS profiling of Stachys

parviflora L. and evaluation of its biological activities. J

Pharm Biomed. 2019; 168:209-216.

The Plant List; 2013. Version1.1. Published on the Internet;

http://www.theplantlist.org/ (accessed 1st January).

El-Sharkawy ER, Eddra A, Abdallah EM. Phytochemical,

antimicrobial and antioxidant properties of Launaea

nudicaulis and Farsetia hamiltonii. JBC. 2017; 31(2):102-

Downloads

Published

2020-11-01

How to Cite

Marzouk, M. M., Elkhateeb, A., El-Shabrawy, M., Farid, M. M., Kawashty, S. A., AbdelHameed, E.-S. S., & Hussein, S. R. (2020). Chemical Profiling of Farsetia aegyptia Turra and Farsetia longisiliqua Decne. and their Chemosystematic Significance: doi.org/10.26538/tjnpr/v4i11.18. Tropical Journal of Natural Product Research (TJNPR), 4(11), 953–960. Retrieved from https://tjnpr.org/index.php/home/article/view/962