Comparative Evaluation of Different Extraction Techniques on Phytochemicals and Antioxidant Activity of Psidium Guajava L. Leaves

Authors

  • Shanthirasekaram Kokilananthan Department of Chemistry, University of Ruhuna, Matara 81000 Sri Lanka
  • Vajira P. Bulugahapitiya Department of Chemistry, University of Ruhuna, Matara 81000 Sri Lanka
  • Harshi Manawadu Department of Chemistry, University of Ruhuna, Matara 81000 Sri Lanka
  • Chinthaka S. Gangabadage Department of Chemistry, University of Ruhuna, Matara 81000 Sri Lanka

Keywords:

Antioxidants, Extraction techniques, Phytochemicals, Psidium guajava L, Spectrophotometric methods

Abstract

The extraction process can play a significant role in the separation of desired  bioactive compounds from plant-based material. Therefore, this study was aimed at comparing different extraction techniques on the isolation of potent phytochemicals and their antioxidant capacity in order to find the optimal extraction process. Psidium guajava leaves were selected for the study as it is known to contain diverse range of phytochemicals and used in many healthcare applications. Water was employed as the extracting solvent and four extraction methods were applied: sonication (E1, one hour, RT, 40 kHz), Soxhlet (E2, six hours, 105ºC), maceration with agitation (E3, six hours, RT, 1000 rpm), and maceration with agitation upon  heating (E4, six hours, 60ºC, 1000 rpm). Standard tests were carried out for phytochemical analysis, and antioxidant capacity was assessed using Ferric Reducing Antioxidant Power (FRAP) and 2,2′-Diphenyl-1-Picrylhydrazyl (DPPH*) radical scavenging assays. The results evealed that P. guajava contains vast number of phytochemicals. Polyphenolics, tannins, and terpenoids appeared to be higher in the extraction process E4, flavonoids, and saponins appeared to be higher in E2, and alkaloids were higher in E3. Total antioxidant capacity was greater in extraction method E4 (432.57 ± 0.51 mg Trolox Eq/g) and the IC50 value of the DPPH radical scavenging assay was low in E3 (273.81 ± 0.07 ppm), indicating higher scavenging activity. In conclusion, the quantity of phytochemicals extracted, and its antioxidant capacity vary depending on the extraction technique. According to FRAP and polyphenolic content, the extraction technique E4 gives the best antioxidative properties. 

References

Zhang Q-W, Lin L-G, Ye W-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin Med. 2018; 13(1):1-26.

Kumar M, Tomar M, Amarowicz R, Saurabh V, Nair MS, Maheshwari C, Sasi M, Prajapati U, Hasan M, Singh S. Guava (Psidium guajava L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Foods. 2021; 10(4):752.

Joseph B and Priya R. Phytochemical and biopharmaceutical aspects of Psidium guajava (L.) essential oil: a review. Res J Med Plants. 2011; 5(4):432-442.

Ben Salah H and Allouche N. Plant-based chemicals extraction and isolation. In: Li Y, Chemat F (Eds.). Plant-Based Green Chemistry 2.0. Tunisia: Springer; 2019; 89-117 p.

Li H-B, Jiang Y, Wong C-C, Cheng K-W, Chen F. Evaluation of two methods for the extraction of antioxidants from medicinal plants. Anal Bioanal Chem. 2007; 388(2):483-488.

Azwanida N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Arom Plants. 2015; 4(196):2167-0412.

Gutiérrez RMP, Mitchell S, Solis RV. Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2008; 117(1): 1-27.

Barbalho SM, Farinazzi-Machado FM, de Alvares Goulart R, Brunnati ACS, Otoboni A, Ottoboni B. Psidium guajava (Guava): A plant of multipurpose medicinal applications. Med Arom Plants. 2012; 1(4):1-6.

Arain A, Hussain Sherazi ST, Mahesar SA, Sirajuddin. Essential oil from Psidium guajava leaves: an excellent source of β-caryophyllene. Nat Prod Commun. 2019; 14(5):1-5.

Kokilananthan S, Vajira PB, Gangabadage CS, Harshi M. Comparative account on antioxidant properties, proximate and phytochemical compositions of seven guava varieties grown in Sri Lanka. J Agric Val Addit. 2020; 3(2):1-16.

Feng X-H, Wang Z-H, Meng D-l, Li X. Cytotoxic and antioxidant constituents from the leaves of Psidium guajava. Bioorg Med Chem Lett. 2015; 25(10):2193-2198.

Jaiarj P, Khoohaswan P, Wongkrajang Y, Peungvicha P, Suriyawong P, Saraya MS, Ruangsomboon O. Anticough and antimicrobial activities of Psidium guajava Linn. leaf extract. J Ethnopharmacol. 1999; 67(2):203-212.

Braga TV, das Dores RGR, Ramos CS, Evangelista FCG, da Silva Tinoco LM, de Pilla Varotti F, das Graças Carvalho M, de Paula Sabino A. Antioxidant, antibacterial and antitumor activity of ethanolic extract of the Psidium guajava leaves. Am J Plant Sci. 2014; 5:3492-3500.

Manikandan R, Anand AV, Kumar S. Phytochemical and in vitro antidiabetic activity of Psidium guajava leaves. Pharmacogn J. 2016: 8(4):392-394.

Abbas M, Ansari MT, ul Hassan S, Alvi MN, Abbas M. The Phytochemical and Comparative Anticancer Study of Methanolic and Chloroform Extracts of Psidium guajava L. Leaves of Pakistani Origin. J Drug Deliv Ther. 2020; 10(1-s):149-153.

Mazumdar S, Akter R, Talukder D. Antidiabetic and antidiarrhoeal effects on ethanolic extract of Psidium guajava (L.) Bat. leaves in Wister rats. Asian Pac J Trop Biomed. 2015; 5(1):10-14.

Hung-Hui C, Po-Hua W, Diana L, Yun-Chieh P, MingChang W. Hepatoprotective effect of guava Psidium guajava L.) leaf extracts on ethanol-induced injury on clone 9 rat liver cells. Food Nutr Sci. 2011; 2(9):983-988.

Kariawasam K, Pathirana R, Ratnasooriya W, Handunnetti S, Abeysekera W. Phytochemical profile and in vitro anti-inflammatory activity of aqueous leaf extract of Sri Lankan variety of Psidium guajava L. J Pharmacogn Phytochem. 2017; 6(4):22-26.

Han EH, Hwang YP, Kim HG, Park JH, Choi JH, Im JH, Khanal T, Park BH, Yang JH, Choi JM. Ethyl acetate extract of Psidium guajava inhibits IgE-mediated allergic responses by blocking FcεRI signaling. Food Chem Toxicol. 2011; 49(1):100-108.

Kaushik NK, Bagavan A, Rahuman AA, Zahir AA, Kamaraj C, Elango G, Jayaseelan C, Kirthi AV,

Santhoshkumar T, Marimuthu S. Evaluation of antiplasmodial activity of medicinal plants from North Indian Buchpora and South Indian Eastern Ghats. Malar J. 2015; 14(1):1-8.

Khawas S, Sivová V, Anand N, Bera K, Ray B, Nosáľová G, Ray S. Chemical profile of a polysaccharide

from Psidium guajava leaves and it’s in vivo antitussive activity. Int J Biol Macromol. 2018; 109:681-686.

Shaheen HM, Ali BH, Alqarawi AA, Bashir AK. Effect of Psidium guajava leaves on some aspects of the central nervous system in mice. Phytother Res. 2000; 14(2):107-111.

Díaz-de-Cerio E, Verardo V, Gómez-Caravaca AM, Fernández-Gutiérrez A, Segura-Carretero A. Health effects of Psidium guajava L. Leaves: An overview of the last decade. Int J Mol Sci. 2017; 18(4):1-31.

Díaz-de-Cerio E, Verardo V, Gómez-Caravaca AM, Fernández-Gutiérrez A, Segura-Carretero A. Exploratory characterization of phenolic compounds with demonstrated anti-diabetic activity in guava leaves at different Oxidation States. Int J Mol Sci. 2016; 17(5):1-13.

Shao M, Wang Y, Liu Z, Zhang D-M, Cao H-H, Jiang R-W, Fan C-L, Zhang X-Q, Chen H-R, Yao X-S.

Psiguadials A and B, two novel meroterpenoids with unusual skeletons from the leaves of Psidium guajava. Org Lett. 2010; 12(21):5040-5043.

Matsuzaki K, Ishii R, Kobiyama K, Kitanaka S. New benzophenone and quercetin galloyl glycosides from Psidium guajava L. J Nat Med. 2010; 64(3):252-256.

Taha TF, Elakkad HA, Gendy AS, Abdelkader MA, Hussein SE. In vitro bio-medical studies on Psidium

guajava leaves. Plant Arch. 2019; 19(1):199-207.

Shu J-C, Chou G-X, Wang Z-T. One new iphenylmethane glycoside from the leaves of Psidium guajava L. Nat Prod Res. 2012; 26(21):1971-1975.

Keawpeng I, Paulraj B, Venkatachalam K. Antioxidant and Antimicrobial Properties of Mung Bean Phyto-Film Combined with Longkong Pericarp Extract and Sonication. Membr. 2022; 12(4):379.

Mtewa AG, Deyno S, Kasali FM, Annu A, Sesaazi DC. General extraction, isolation and characterization techniques in drug discovery: A review. Int J Sci Basic Appl Res. 2018; 38(1):10-24.

Abubakar AR and Haque M. Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci. 2020; 12(1):1-10.

Gayathri V and Kiruba D. Preliminary phytochemical analysis of leaf powder extracts of Psidium guajava L. Int J Pharmacogn Phytochem Res. 2014; 6(2):332-334.

Yadav R, Khare R, Singhal A. Qualitative phytochemical screening of some selected medicinal plants of Shivpuri district (mp). Int J Life Sci Sci Res. 2017; 3(1):844-847.

Kupina S, Fields C, Roman MC, Brunelle SL. Determination of total phenolic content using the Folin-C assay: Single-laboratory validation, First action 2017.13. J AOAC Int. 2018; 101(5):1466-1472.

Prabhavathi R, Prasad M, Jayaramu M. Studies on qualitative and quantitative phytochemical analysis of Cissus quadrangularis. Pelagia. Res Libr Adv Appl Sci Res. 2016; 7(4):11-17.

Shraim AM, Ahmed TA, Rahman MM, Hijji YM. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT-Food Sci Technol. 2021; 150:111932.

Pękal A and Pyrzynska K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Methods. 2014; 7(9):1776-1782.

Ahmed HOA. Determination of tea saponin in Camellia seed oil with UV and HPLC analysis. World J Eng Technol. 2015; 3(4):30-37.

Du M, Guo S, Zhang J, Hu L, Li M. Quantitative analysis method of the tea saponin. Open J For. 2018; 8(1): 61-67.

Ajanal M, Gundkalle MB, Nayak SU. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer. Anc Sci Life. 2012; 31(4):198-201.

Shamsa F, Monsef H, Ghamooghi R, Verdian Rizi MJRJP. Spectrophotometric determination of total alkaloids in Peganum harmala L. using bromocresol green. Res J Phytochem. 2007; 1(2):79-82.

Biglari F, AlKarkhi AF, Easa AM. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008; 107(4):1636-1641.

Parit SB, Dawkar VV, Tanpure RS, Pai SR, Chougale AD. Nutritional quality and antioxidant activity of

wheatgrass (Triticum aestivum) unwrap by proteome profiling and DPPH and FRAP assays. J Food Sci. 2018; 83(8):2127-2139.

Gliszczyńska-Świgło A. Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays. Food Chem. 2006; 96(1):131-136.

Blois M. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181(4617):1199-1200.

Kokilananthan S, Bulugahapitiya VP, Gangabadage CS, Manawadu H. Comparative accounts on proximate and phytochemical compositions and antioxidant properties of Garcinia quaesita and Garcinia zeylanica. Int J Minor Fruits Med Arom Plants. 2021; 7(2):59-67.

Kokilananthan S, Bulugahapitiya VP, Manawadu H, Gangabadage CS. Phytochemicals and antioxidant properties of the leaves of wild guava varieties grown in Sri Lanka. J Sci. 2021; 12(2):33-46.

Pinela J, Prieto M, Pereira E, Jabeur I, Barreiro MF, Barros L, Ferreira IC. Optimization of heat-and ultrasound-assisted extraction of anthocyanins from Hibiscus sabdariffa calyces for natural food colorants. Food Chem. 2019; 275:309-321.

Downloads

Published

2022-04-01

How to Cite

Kokilananthan, S., P. Bulugahapitiya, V., Manawadu, H., & S. Gangabadage, C. (2022). Comparative Evaluation of Different Extraction Techniques on Phytochemicals and Antioxidant Activity of Psidium Guajava L. Leaves. Tropical Journal of Natural Product Research (TJNPR), 6(4), 552–557. Retrieved from https://tjnpr.org/index.php/home/article/view/96