Comparative HPLC-PDA-MS/MS Tentative Identification of Polyphenolics from the Leaf Extracts of Three Selected Tradescantia species and their In-Vivo Hepatoprotective Activity

doi.org/10.26538/tjnpr/v4i11.15

Authors

  • Seham S. El-Hawary Department of Pharmacognosy, Faculty of Pharmacy Cairo University, Cairo 11562, Egypt
  • Ibrahim I. Mahmoud Department of Pharmacognosy, Faculty of Pharmacy Ahram Canadian University, Egypt
  • Aya M. Faisal Department of Pharmacognosy, Faculty of Pharmacy Ahram Canadian University, Egypt
  • Samir M. Osman Department of Pharmacognosy, Faculty of Pharmacy October 6 University, Giza, Egypt
  • Amany A. Sleem Department of Pharmacology, National Research Centre, Dokki, Giza, Egypt
  • Fatma A. Morsy Department of Pathology, National Research Centre, Dokki, Giza, Egypt
  • Manal M. Sabry Department of Pharmacognosy, Faculty of Pharmacy Cairo University, Cairo 11562, Egypt

Keywords:

Hepatoprotective effect, Phenolic content, Flavonoid content, HPLC-PDA-MS/MS, Tradescantia

Abstract

Tradescantia pallida (Rose) D.R. Hunt, T. zebrina Heynh ex. Bosse and T. spathacea Sw. (family Commelinaceae), are three succulent plants widely used in traditional medicine for different purposes. In this study, the phenolic-based phytoconstituents in the leaf ethanol extracts of T. pallida, T. zebrina and T. spathacea were profiled using HPLC-PDA-MS/MS. A total of thirtythree (33) polyphenolic compounds were tentatively identified in all the three plants and were predominantly: flavonoids, phenolic acids, anthocyanins and their glycosides. The total phenolic and total flavonoid contents were estimated colorimetrically as 85.11 ± 0.61, 62.17 ± 1.62 and 35.35 ± 0.14 µg gallic acid equivalent/mg of each dried extract and 29.52 ± 0.12, 11.54 ± 0.01 and 26.87 ± 0.04 µg quercetin equivalent/mg of each dried extract of T. pallida, T. zebrina and T. spathacea, respectively. Oral treatment of rats injected with carbon tetrachloride using the ethanol leaf extracts of the three plants for more than 10 days exhibited significant hepatoprotective activity when compared to silymarin. The crude ethanol extract of T. pallida, having the highest total phenolic and total flavonoid contents displayed the most promising hepatoprotective effect of all the three plants at 200 mg/kg by significantly reducing the serum levels of aspartate aminotransferase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP) to 43.9 ± 1.6, 46.8 ± 1.7 and 8.1 ± 0.6, respectively. 

References

Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov. 2005; 4(6):489-499.

Prabu SL, Umamaheswari A, Puratchikody A. Phytopharmacological potential of the natural gift Moringa oleifera Lam and its therapeutic application: An overview. Asian Pac J Trop Med. 2019; 12(11):485-498.

Villanueva-Toledo JR, Chale-Dzul J, Castillo-Bautista C, Olivera-Castillo L, Rangel-Méndez JA, Graniel-Sabido MJ, Moo-Puc RE. Hepatoprotective effect of an ethanol extract of Tradescantia pallida against CCl4-induced liver damage in rats, South Afr J Bot. 2020; 135:444-450.

Paiva ÉA, Isaias RM, Vale FH, Queiroz CG. The influence of light intensity on anatomical structure and pigment contents of Tradescantia pallida (Rose) Hunt. cv. purpurea boom (Commelinaceae) leaves. Braz Arch Biol Technol. 2003; 46(4): 617-624.

Menegazzo RF, Bortolucci WDC, Marko de Oliveira HL, Menegazzo AW, Gonçalves JE, Fernandez CMM, Gazim ZC, Lopes AD. Chemical composition of Tradescantia pallida (Rose) D.R. Hunt var. purpurea Boom (Commelinaceae) essential oil. Nat P od Res. 2020; 1-5.

Mhlongo LS and Van Wyk BE. Zulu medicinal ethnobotany: new records from the Amandawe area of KwaZuluNatal, South Africa. South Afr J Bot. 2019; 122:260-290.

Gupta GP and Kulshrestha U. Biomonitoring and remediation by plants. In: Kulshrestha U, Saxena P. Plant Responses to Air Pollution.

Springer, Singapore. 2016. 119-132 p.

Rosales-Reyes T, de la Garza M, Arias-Castro C, Rodrıguez-Mendiola M, Fattel-Fazenda S, Arce-Popoca E, Hernandez-Garcıa S, Villa-Trevi S. Aqueous crude extract of Rhoeo discolor, a Mexican medicinal plant, decreases the formation of liver preneoplastic foci in rats. J Ethnopharmacol. 2008; 115(3):381-386.

González-Avila M, Arriaga-Alba M, De La Garza M, del Carmen Hernandez-Pretelin M, Dominguez-Ortiz MA, Fattel-Fazenda S, Villa-Trevino S. Antigenotoxic, antimutagenic and ROS scavenging activities of a Rhoeo discolor ethanolic crude extract. Toxicol In Vitro 2003; 17(1):77-83.

Arriaga-Alba M, Blasco JL, Ruíz-Pérez NJ, SánchezNavarrete J, Rivera-Sánchez R, González-Avila M. Antimutagenicity mechanisms of the Rhoeo discolor ethanolic extract. Exp Toxicol Pathol. 2011; 63:243-248.

García-Varela R, García-García RM, Barba-Dávila BA, Fajardo-Ramírez OR, Serna-Saldívar SO, Cardineau GA. Antimicrobial activity of Rhoeo discolor phenolic rich extracts determined by flow cytometry. Molecules 2015; 20(10):18685-18703.

Weniger B, Haag-Berrurier M, Anton R. Plants of Haiti used as antifertility agents. J Ethnopharmacol. 1982; 6(1):67-84.

Longuefosse JL and Nossin E. Medical ethno-botany survey in Martinique. J Ethnopharmacol. 1996; 53(3):117-142.

Halberstein RA. Medicinal plants: Historical and crosscultural usage patterns. Ann Epidemiol. 2005; 15(9):686- 699.

Tan JBL, Lim YY, Lee SM. Antioxidant and antibacterial activity of Rhoeo spathacea (Swartz) Stearn leaves. J Food Sci Technol. 2015; 52(4):2394-2400.

Garcia M, Miyares C, Menendez E, Sainz F. Blockade of the antiadrenergic action of Bretylium by an aqueous extract of the leaves of Rhoeo spathacea. Can J Physiol Pharmacol. 1971; 49(12):1106-1110.

Faden RB. The author and typification of Tradescantia zebrina (Commelinaceae). Kew Bull. 2008; 63(4):679-680.

Amaral FMM, Ribeiro MNS, Barbosa-Filho JM, Reis AS, Nascimento FRF, Macedo RO. Plants and chemical constituents with giardicidal activity. Rev Bras Farmacogn. 2006; 16:696-720.

Tapia-Pérez ME, Tapia-Contreras A, Cedillo-Rivera R, Osuna L, Meckes M. Screening of Mexican medicinal plants for antiprotozoal activity – Part II. Pharm Biol. 2003; 41(3):180-183.

Dash GK, Swe M, Mathews A, Gouri K, Dash M. Tradescantia Zebrina : A promising medicinal. Indo Am J Pharm Sci. 2017; 4(10):3498-3502.

González-Coloma A, Reina M, Sáenz C, Lacret R, RuizMesia L, Arán VJ, Sanz J, Martínez-Díaz RA. Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants. Parasitol Res. 2012; 110(4):1381-1392.

Idaka E, Ogawa T, Kondo T, Goto T. Isolation of highly acylated anthocyanins from Commelinaceae plants, Zebrina pendula, Rhoeo spathacea and Setcreasea purpurea. Agric Biol Chem. 1987; 51(8):2215-2220.

Idaka E, Ohashi Y, Ogawa T, Kondo T, Goto O. Structure of zebrinin, a novel acylated anthocyanin isolated from Zebrina pendula. Tetrahedron Lett. 1987; 28(17):1901-1904.

Tatsuzawa F, Saito N, Maeyama K, Yokoi M, Shigihara A, Honda T. Triacylated anthocyanidin 3-arabinosylglucoside- 7,3’-diglucosides isolated from the bluish flowers of Tradescantia virginiana cultivars and their distribution in the Tradescantieae. Heterocyc. 2010; 81(10):2257-2267.

Yoshitama K. Blue and purple anthocyanins isolated from the flowers of Tradescantia reflexa. Bot Mag Tokyo 1978; 91(3):207-212.

Esmaeili H, Karami A, Maggi F. Essential oil composition, total phenolic and flavonoids contents, and antioxidant activity of Oliveria decumbens Vent. (Apiaceae) at different phenological stages. J Clean Prod. 2018; 198:91-95.

Kushwaha D and Verma Y. Evaluation of antioxidant and free radical scavenging activity of Tagetes patula. Ann Res Rev Biol. 2017; 13(6):1-8.

Sobeh M, Mahmoud MF, Abdelfattah MAO, El-Beshbishy HA, El-Shazly AM, Wink M. Albizia harveyi: phytochemical profiling, antioxidant, antidiabetic and hepatoprotective activities of the bark extract. Med Chem Res. 2017; 26(12):3091-3105.

Yang C, Li L, Ma Z, Zhong Y, Pang W, Xiong M, Fang S, Li Y. Hepatoprotective effect of methyl ferulic acid against carbon tetrachloride-induced acute liver injury in rats. Exp Ther Med. 2018; 15(3):2228-2238.

Snedecor GW. Statistical methods. Iowa State University Press, 1989. P.503.

Wang WL, Sheu SY, Huang WD, Chuang YL, Tseng HC, Hwang TS, Fu YT, Kuo YH, Yao CH, Kuo TF. Phytochemicals from Tradescantia lbiflora Kunth extracts reduce serum uric acid levels in oxonate-induced rats. Pharmacogn Mag. 2016; 12(46): 223.

Tsimogiannis D, Samiotaki M, Panayotou G, Oreopoulou V. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS. Molecules 2007; 12(3):593- 606.

Fabre N, Rustan I, de Hoffmann E, Quetin-Leclercq J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J Am Soc Mass Sp. 2001; 12(6):707- 715.

Dueñas M, Mingo-Chornet H, Pérez-Alonso JJ, Di PaolaNaranjo R, González-Paramás AM, Santos-Buelga C. Preparation of quercetin

lucuronides and characterization by HPLC-DAD-ESI/MS. Eur Food Res Technol. 2008; 227(4):1069-1076.

Singh R, Wu B, Tang L, Liu Z, Hu M. Identification of the position of mono-O-glucuronide of flavones and flavonols by analyzing shift in online UV spectrum (lambdamax) generated from an online diode array detector. J Agric Food Chem. 2010; 58(17):9384-9395.

Pascale R, Acquavia MA, Cataldi TR, Onzo A, Coviello D, Bufo SA, Scrano L, Ciriello R, Guerrieri A, Bianco G. Profiling of quercetin glycosides and acyl glycosides in sundried peperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI (-)-MS/MS and polarity rediction in reversed-phase separations. Anal Bioanal Chem. 2020; 412:3005-3015.

Marczak Ł, Znajdek-Awizeń P, Bylka W. The use of mass spectrometric techniques to differentiate isobaric and isomeric flavonoid conjugates from Axyris amaranthoides. Molecules 2016; 21(9):1-15.

Downloads

Published

2020-11-01

How to Cite

El-Hawary, S. S., Mahmoud, I. I., Faisal, A. M., Osman, S. M., Sleem, A. A., Morsy, F. A., & Sabry, M. M. (2020). Comparative HPLC-PDA-MS/MS Tentative Identification of Polyphenolics from the Leaf Extracts of Three Selected Tradescantia species and their In-Vivo Hepatoprotective Activity: doi.org/10.26538/tjnpr/v4i11.15. Tropical Journal of Natural Product Research (TJNPR), 4(11), 926–935. Retrieved from https://tjnpr.org/index.php/home/article/view/959