Evaluation of the Therapeutic Effect of Curcumin Phytosomes on Streptozotocin-Induced Diabetic Rats doi.org/10.26538/tjnpr/v6i4.11

Main Article Content

Wasel Alhabashneh
Khaled M. Khleifat
Moath Alqaraleh
Laila Al-Omari
Nidal Qinna
Muhamad O. Al-limoun
Haitham Qaralleh
Husni S. Farah
Talal Alqais

Abstract

Diabetes Mellitus (DM) has been described as a metabolic disorder that results in chronic high blood sugar level. However, it is difficult to evaluate the effectiveness of natural products such as curcumin on diabetes and its complications, due to the low intestinal bioavailability and the low systemic absorption rate. The study evaluated the efficacy of the phytosome in its ability to enhance the absorption of curcumin and thus its effect on blood sugar level and lipid profile in streptozotocin (STZ)-nicotinamide-induced diabetic rats. Curcumin and combination of curcumin and phytosomes (Cur-P) were administered orally at 150 and 250 mg/kg, respectively, to streptozotocin (STZ)-nicotinamide induced DM rats. Metformin was used as a positive control. The blood glucose level and lipid profile were monitored for 21 days. The results showed a clear decline in the levels of blood glucose, cholesterol, triglycerides, and the low-density lipoprotein (LDL), cholesterol, in addition to a significant rise in the high-density lipoprotein (HDL). The hypoglycemic and hypolipidemic effects caused by treatment with Cur-P were higher than those treated with Curcumin alone at the same dose, i ndicating that the phytosomes enhances the potential of absorption and bioavailability of Curcumin. The findings suggest that Cur-P may have a potential therapeutic effect on diabetes through enhancing the potential of absorption and bioavailability of curcumin.

Downloads

Download data is not yet available.

Article Details

How to Cite
Alhabashneh, W., M. Khleifat, K., Alqaraleh, M., Al-Omari, L., Qinna, N., O. Al-limoun, M., Qaralleh, H., S. Farah, H., & Alqais, T. (2022). Evaluation of the Therapeutic Effect of Curcumin Phytosomes on Streptozotocin-Induced Diabetic Rats: doi.org/10.26538/tjnpr/v6i4.11. Tropical Journal of Natural Product Research (TJNPR), 6(4), 529-536. https://tjnpr.org/index.php/home/article/view/93
Section
Articles
Author Biography

Khaled M. Khleifat, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan

Department of Biological Sciences, Mutah University, Al-Karak, Jordan

How to Cite

Alhabashneh, W., M. Khleifat, K., Alqaraleh, M., Al-Omari, L., Qinna, N., O. Al-limoun, M., Qaralleh, H., S. Farah, H., & Alqais, T. (2022). Evaluation of the Therapeutic Effect of Curcumin Phytosomes on Streptozotocin-Induced Diabetic Rats: doi.org/10.26538/tjnpr/v6i4.11. Tropical Journal of Natural Product Research (TJNPR), 6(4), 529-536. https://tjnpr.org/index.php/home/article/view/93

References

Yousef I and Alqaraleh M. A prominent action of Insulin like growth factor I (IGF-I) in stimulation of uterine leiomyomata: a review. Rom J Diabetes Nutr Metab Dis. 2020; 27(2):162-167.

O’N ill S, Bohl M, Gr g rs n S, rm ns n K, O’Dris oll L. Blood-based biomarkers for metabolic syndrome. Trends Endocrinol Metab. 2016; 27(6):363-374.

Al-Asoufi A, Khlaifat A, Tarawneh A, Alsharafa K, AlLimoun M, Khleifat K. Bacterial Quality of Urinary Tract Infections in Diabetic and Non Diabetics of the Population of Ma'an Province, Jordan. Pak J Biol Sci. 2017; 20(4):179-188.

Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A, Perego C, Muscogiuri G. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro-and macrovascular complications: avenues for a mechanisticbased therapeutic approach. Curr Diabetes Rev. 2011;7(5):313-324.

Giacco F and Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010; 107(9):1058-1070.

Ozougwu J, Obimba K, Belonwu C, Unakalamba C. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol. 2013; 4(4):46-57.

Peyroux J and Sternberg M. Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes. Pathol Biol. 2006; 54(7):405-419.

Huang SM, Chuang HC, Wu CH, Yen GC. Cytoprotective effects of phenolic acids on methylglyoxal‐induced apoptosis in Neuro‐2A cells. Mol Nutr Food Res. 2008;52(8):940-949.

Alqaraleh M and Kasabri V. The antiglycation effect of monomethyl branched chained fatty acid and phytochemical compounds and their synergistic effect on obesity related colorectal cancer cell panel. Rom J Diabetes Nutr Metab Dis. 2019; 26(4):361-369.

Alqaraleh M, Kasabri V, Aljaafreh A, Al-Majali I, AlOthman N, Khleifat K, Khaleel S, Al‐Tawarah NM, Qaralleh H, Al-majali M. Evaluation of the Antiglycation Effect of Branched Chain Amino Acids and Phytochemical Compounds on RAW 264.7 Cell Line and their Synergistic

Effect on Colorectal Cancer Cell Line Panel. Trop J Nat Prod Res. 2021; 5(1):88-93.

Yousef I, Oran S, Alqaraleh M, Bustanji Y. Evaluation of Cytotoxic, Antioxidant and Antibacterial Activities of Origanum dayi, Salvia palaestina and Bongardia chrysogonum Plants Growing Wild in Jordan.Trop J Nat Prod Res.. 2021; 5(1):66-70

Tarawneh M, Al-Jaafreh AM, Al-Dal'in H, Qaralleh H, Alqaraleh M, Khataibeh M. Roasted date and barley beans s n lt rn tiv ’s coffee drink: micronutrient and caffeine composition, antibacterial and antioxidant activities. Sys Rev Pharm. 2021; 12(1):1079-1083.

Khleifat KM, Abboud MM, Al-Mustafa AH, Al-Sharafa KY. Effects of carbon source and Vitreoscilla hemoglobin (VHb) on the production of β-galactosidase in Enterobacter aerogenes. Curr Microbiol. 2006; 53(4):277-281.

Khleifat KM, Abboud M, Omar S, Al-Kurishy J. Urinary tract infection in South Jordanian population. J Med Sci. 2006; 6(1):5-11.

Tarawneh KA, Al‐Tawarah NM, Abdel‐Ghani AH, Al‐Majali AM, Khleifat KM. Characterization of verotoxigenic Escherichia coli (VTEC) isolates from faeces of small ruminants and environmental samples in Southern Jordan. J Basic Microbiol. 2009; 49(3):310-317.

Al-Tawarah NM, Qaralleh H, Khlaifat AM, Nofal MN, Alqaraleh M, Khleifat KM, Al-limoun MO, Al Shhab MA. Anticancer and Antibacterial Properties of Verthemia Iphionides Essential Oil/Silver Nanoparticles. Biomed Pharmacol J. 2020; 13(3):1175-1185.

Khwaldeh A, Shraideh Z, Badran D, Alzbeede A, Farajallah M, AlQattan D. Ameliorative Effect of Turmeric and Cocoa Extract against Acute Second hand Exposure of Tobacco Smoking on Hepatocytes and Enterocytes in Albino Rats: Ultrastructural Study. Biomed Pharmacol J. 2021;

(1):199-206.

Alqaraleh M, Kasabri V, Mashallah S. Evaluation of Anticancer and Anti-Inflammatory Properties of Branched Chain Amino Acids. J Biochem Cell Biol. 2018; 1(2):108.

Alqaraleh M, Kasabri V, Al-Othman N. Evaluation of Pancreatic and Extra Pancreatic Effects of Branched Amino Acids. Rom J Diabetes Nutr Metab Dis. 2019; 26(2):199-209.

Almajali IS, Al-Tarawneh A, Qaralleh H, Al-Limoun M, Al-Sarayrah MM, Alqaraleh M, Rayyan WA, Khleifat KM, Dmour SM. Biodegradation of Phenol by Curtobacterium flaccumfaciens: Optimization of Growth Conditions. Pol J Environ Stud. 2021; 30(6):5435-5442.

Al-Tarawneh A, Khleifat KM, Tarawneh IN, Shiyyab K, El-Hasan T, Sprocati AR, Alisi C, Tasso F, Alqaraleh M. Phenol biodegradation by plant growth promoting bacterium, S. odorifera: kinetic modeling and process optimization. Arch Microbiol. 2022; 204(1):1-14.

Alqaraleh M, Kasabri V, Al-Majali I, Aljaafreh A, AlOthman N, Khleifat K, Al-Tawarah NM, Qaralleh H, Khwaldeh AS, Alalawi S. Branched chain amino Acids as in vitro and In vivo Anti-Oxidation Compounds. Res J Pharm Technol. 2021; 14(7):3899-3904.

Magharbeh, M. K, Khleifat, K. M, Al-kafaween, M. A, Saraireh R, Qaralleh H, El-Hasan T, Hujran T, Jarrah N, AlTarawneh A, Ajbour SH. Biodegradation of Phenol by Bacillus simplex: Characterization and Kinetics Study. Appl Environ Biotechnol. 2021; 6(2):1-12.

Aljbour SH, Khleifat KM, Al Tarawneh A, Asasfeh B, Qaralleh H, El-Hasan T, Magharbeh MK, Al-Limoun MO. Growth Kinetics and Toxicity of Pseudomonas fredriksbergsis Grown on Phenol as Sole Carbon Source. J Ecol Eng. 2021; 22(10):251-263.

Khleifat KM, Qaralleh H, Al-limoun MO, Al-khlifeh EM, Aladaileh SA, Tawarah N, Almajali IS. Antibacterial and Antioxidant Activities of Local Honey from Jordan. Trop J Nat Prod Res. 2021; 5(3):470-477 .

Khleifat K, Abboud M, Al-Shamayleh W, Jiries A, Tarawneh K. Effect of chlorination treatment on gram negative bacterial composition of recycled wastewater. Pak J Biol Sci. 2006; 9:1660-1668.

Khleifat KM, Tarawneh KA, Ali Wedyan M, Al-Tarawneh AA, Al Sharafa K. Growth kinetics and toxicity of Enterobacter cloacae grown on linear alkylbenzene sulfonate as sole carbon source. Curr Microbiol. 2008;57(4):364-370.

Hewlings SJ and Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6(10):92.

Rivera-Mancía S, Lozada-García MC, Pedraza-Chaverri J. Experimental evidence for curcumin and its analogs for management of diabetes mellitus and its associated complications. Eur J Pharmacol. 2015;756:30-37.

Gorinova C, Aluani D, Yordanov Y, Kondeva-Burdina M, Tzankova V, Popova C, Yoncheva K. In vitro evaluation of antioxidant and neuroprotective effects of curcumin loaded in Pluronic micelles. Biotechnol Biotechnol Equip. 2016; 30(5):991-997.

Kaur R, Singh J, Tripathi S. Incorporation of inorganic nanoparticles into an organic polymer matrix for data storage application. Curr Appl Phys. 2017; 17(5):756-762.

Fukui H. Development of new cosmetics based on nanoparticles. Nanoparticle Technology Handbook: Elsevier; 2018; 399-405p.

Qaralleh H, Khleifat KM, Al-Limoun MO, Alzedaneen FY, Al-Tawarah N. Antibacterial and synergistic effect of biosynthesized silver nanoparticles using the fungi Tritirachium oryzae W5H with essential oil of Centaurea damascena to enhance conventional antibiotics activity.

Adv Nat Sci. Nanosci Nanotechnol. 2019; 10(2):025016.

Sahebkar A. The promise of curcumin–phosphatidylcholine ompl x for rdiom t boli dis s s: mor th n just ‘mor ur umin’. Nat Prod Res. 2015; 29(5):392-393.

Bhattacharya S. Phytosomes: the new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int J Health Res. 2009; 2(3):225-232.

Awasthi R, Kulkarni G, Pawar VK. Phytosomes: an approach to increase the bioavailability of plant extracts. Int J Pharm Pharm. 2011; 3(2):1-3.

Govind P. Medicinal plants against liver diseases. Int Res JPharm. 2011; 2(5):115-121.

El Sayed SM, Al-quliti A-S, Mahmoud HS, Baghdadi H, Maria RA, Nabo MMH, Hefny A. Therapeutic benefits of Al-hijamah: in light of modern medicine and prophetic medicine. Am J Med Biol Res. 2014; 2(2):46-71.

Ghasemi A, Khalifi S, Jedi S. Streptozotocin-nicotinamideinduced rat model of type 2 diabetes. Acta Physiol Hung. 2014; 101(4):408-420.

D pr m T, Yıldız S, S ri E, Bingol S, T s i S, Asl n S, Sozmen M, Nur G. Distribution of glutathione peroxidase 1 in liver tissues of healthy and diabetic rats treated with capsaisin. Biotech Histochem. 2015; 90(1):1-7.

Alqaraleh M, Kasabri V, Farha RA, Naffa RG, Yousef I, Aljaafreh A. Branched amino acids as potential biomarkers in metabolic syndrome patients and as hypolipidemic compounds. EurAsian J Biosci. 2019; 13(2):2233-2241.

Trinder P. A simple turbidimetric method for the determination of serum cholesterol. Ann Clin Biochem. 1969; 6(5):165-166.

Sharma RA, Steward WP, Gescher AJ. Pharmacokinetics and pharmacodynamics of curcumin. In: Aggarwal, B.B., Surh, YJ., Shishodia, S. (eds) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Advances in Experimental Medicine and Biology, vol 595. Springer, Boston, MA. 2007. 453-470 p.

Vieira R, Souto SB, Sánchez-López E, López Machado A, Severino P, Jose S, Santini A, Fortuna A, García ML, Silva AM. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome—review of classical and new compounds: part-I. Pharm. 2019; 12(4):152.

Chait A, Ginsberg HN, Vaisar T, Heinecke JW, Goldberg IJ, Bornfeldt KE. Remnants of the triglyceride-rich lipoproteins, diabetes, and cardiovascular disease. Diabetes. 2020; 69(4):508-516.

Bopanna K, Kannan J, Sushma G, Balaraman R, Rathod S. Antidiabetic and antihyperlipaemic effects of neem seed kernel powder on alloxan diabetic rabbits. Indian J Pharmacol. 1997; 29(3):162.

Vinayagam R, Jayachandran M, Chung SSM, Xu B. Guava leaf inhibits hepatic gluconeogenesis and increases glycogen synthesis via AMPK/ACC signaling pathways in streptozotocin-induced diabetic rats. Biomed Pharmacother. 2018; 103:1012-1017.

Roh S-S, Kwon OJ, Yang JH, Kim YS, Lee SH, Jin J-S, Jeon Y-D, Yokozawa T, Kim HJ. Allium hookeri root protects oxidative stress-induced inflammatory responses and β-cell damage in pancreas of streptozotocin-induced diabetic rats. BMC Compl Altern Med. 2016; 16(1):1-10.

Zhao JF, Ching LC, Huang YC, Chen CY, Chiang AN, Kou YR, Shyue SK, Lee TS. Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol Nutr Food Res. 2012; 56(5):691-701.

Dong S-Z, Zhao S-P, Wu Z-H, Yang J, Xie X-Z, Yu B-l, Nie S. Curcumin promotes cholesterol efflux from adipocytes related to PPARgamma–LXRalpha–ABCA1 passway. Mol Cell Biochem. 2011; 358(1):281-285.

Wong J, Quinn CM, Gelissen IC, Jessup W, Brown AJ. The effect of statins on ABCA1 and ABCG1 expression in human macrophages is influenced by cellular cholesterol levels and extent of differentiation. Atherosclerosis. 2008;196(1):180-189.

Yuan H-Y, Kuang S-Y, Zheng X, Ling H-Y, Yang Y-B, Yan P-K, Li K, Liao D-F. Curcumin inhibits cellular cholesterol accumulation by regulating SREBP-1/caveolin-1 signaling pathway in vascular smooth muscle cells. Acta Pharmacol Sin. 2008; 29(5):555-563.

Ding L, Li J, Song B, Xiao X, Zhang B, Qi M, Huang W, Yang L, Wang Z. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol Appl Pharmacol. 2016; 304:99-109.

Aldini R, Budriesi R, Roda G, Micucci M, Ioan P, D’Erri o-Grigioni A, Sartini A, Guidetti E, Marocchi M, Cevenini M. Curcuma longa extract exerts a myorelaxant effect on the ileum and colon in a mouse experimental colitis model, independent of the anti-inflammatory effect.

PloS One. 2012; 7(9):e44650.

Shamsi-Goushki A, Mortazavi Z, Mirshekar MA, Mohammadi M, Moradi-Kor N, Jafari-Maskouni S, Shahraki M. Comparative Effects of Curcumin versus Nano-Curcumin on Insulin Resistance, Serum Levels of Apelin and Lipid Profile in Type 2 Diabetic Rats. Diabetes

Metab Syndr Obes. 2020; 13:2337-2346.

Mahesh T, Balasubashini MS, Menon VP. Effect of photoirradiated curcumin treatment against oxidative stress in streptozotocin-induced diabetic rats. J Med Food. 2005;8(2):251-255.

Poolsup N, Suksomboon N, Kurnianta PDM, Deawjaroen K. Effects of curcumin on glycemic control and lipid profile in prediabetes and type 2 diabetes mellitus: A systematic review and meta-analysis. PloS one. 2019; 14(4):e0215840.

Zhang D-W, Fu M, Gao S-H, Liu J-L. Curcumin and diabetes: a systematic review. J Evid-Based Compl Altern Med. 2013; Article ID 636053, 16 pages.

Mantzorou M, Pavlidou E, Vasios G, Tsagalioti E, Giaginis C. Effects of curcumin consumption on human chronic diseases: A narrative review of the most recent clinical data. Phytother Res. 2018; 32(6):957-975.

Rahimi HR, Mohammadpour AH, Dastani M, Jaafari MR, Abnous K, Mobarhan MG, Oskuee RK. The effect of nanocurcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: a randomized clinical trial. Avicenna J Phytomed. 2016; 6(5):567-577.

Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today. 2012;17(1-2):71-80.

Ganugula R, Arora M, Jaisamut P, Wiwattanapatapee R, Jørgensen HG, Venkatpurwar VP, Zhou B, Rodrigues Hoffmann A, Basu R, Guo S. Nano‐curcumin safely prevents streptozotocin‐induced inflammation and apoptosis in pancreatic beta cells for effective management of Type 1 diabetes mellitus. Br J Pharmacol. 2017; 174(13):2074-2084.