Expanding the Frontiers of Bacterial Diagnosis through Bacteriophage Biotechnology . doi.org/10.26538/tjnpr/v4i11.2

Main Article Content

Tolulope J. Oduselu
Oluwafolajimi A. Adesanya
Oluwasegun I. Daramola
Ayobami J. Akomolafe
Olubusuyi M. Adewumi

Abstract

In a bid to achieve microbial diagnostic precision and reduce diagnostic turn-around time, the development of technologically advanced novel techniques has been on the rise. There is a gradual phasing out of traditional diagnostic methods by more specific and highly sensitive molecular techniques. Asides from being technically demanding and cost-ineffective, these molecular methods have themselves not fulfilled perhaps the most essential diagnostic criterion of distinguishing between viable and dead bacterial cells. The use of bacteriophages as biorecognition elements for bacterial detectors offers numerous advantages in terms of cost, ease of accessibility, and high specificity binding of bacteriophages to their bacterial host. Biotechnological advancements further give bacteriophage use the leading edge as genetic modification of bacteriophage genome through the fluorescent gene insertion produces reporter bacteriophages. These recombinants can produce detectable fluorescent signals through intracellular lytic action, strictly in metabolically active bacteria cells. Fluorescent labelled enzyme-active and cell wall binding domains of bacteriophages also offer better alternatives to the use of antibodies as diagnostic markers because they are resistant to pH and temperature sensitivities. Overall, bacteriophage-based detection systems are less prone to detection errors and significantly reduce diagnostic time while also attaining high test sensitivity.

Article Details

How to Cite
Oduselu, T. J., Adesanya, O. A., Daramola, O. I., Akomolafe, A. J., & Adewumi, O. M. (2020). Expanding the Frontiers of Bacterial Diagnosis through Bacteriophage Biotechnology: . doi.org/10.26538/tjnpr/v4i11.2. Tropical Journal of Natural Product Research (TJNPR), 4(11), 855-860. https://tjnpr.org/index.php/home/article/view/928
Section
Articles

References

Lu TK, Bowers J, Koeris MS. Advancing bacteriophagebased microbial diagnostics with synthetic biology. Trends Biotechnol. 2013; 31(6):325–327.

Slomovic S, Pardee K, Collins JJ. Synthetic biology devices for in vitro and in vivo diagnostics. ProcNatl Acad Sci. 2015; 112(47):14429–4435.

Rechnitz G, Riechel T, Kobos R, Meyerhoff M. Glutamineselective membrane electrode that uses living bacterial cells. Sci. 1978; 199(4327):440–441.

Simpson ML, Sayler GS, Applegate BM, Ripp S, Nivens DE, Paulus MJ, Jellison GE. Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors. Trends Biotechnol. 1998; 16(8):332–338.

Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ. Programmable cells: Interfacing natural and engineered gene networks. Proceedings of the National Academy of Sciences [Internet]. 2004 Jun 1;101(22):8414–9.

Loessner MJ, Rees CED, Stewart GSAB, Scherer S. Construction of Luciferase Reporter Bacteriophage A511::luxAB for Rapid and Sensitive Detection of Viable Listeria Cells. Appl Environ Microbiol. 1996; 62(4): 1133- 1140.

Schofield D, Sharp NJ, Westwater C. Phage-based platforms for the clinical detection of human bacterial pathogens. Bacterioph. 2012; 2(2):105–121.

Bagheryan Z, Raoof J-B, Golabi M, Turner APF, Beni V. Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample. Biosens Bioelectron. 2016; 80:566–573.

Hameed S, Xie L, Ying Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci Technol. 2018; 81:61– 73.

Sloan A, Wang G, Cheng K. Traditional approaches versus mass spectrometry in bacterial identification and typing. Clin Chim Acta. 2017; 473:180–185.

van der Merwe RG, Warren RM, Sampson SL, Gey van Pittius NC. Phage-based detection of bacterial pathogens. Analyst 2014; 139:2617–2626.

Ma K and Kim SD. Enliven Archive | www.enlivenarchive.org. 2018;5(1). Available from: www.enlivenarchive.org

Váradi L, Luo JL, Hibbs DE, Perry JD, Anderson RJ, Orenga S, Groundwater PW. Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chemical Society Reviews. Roy Soc Chem. 2017; 46:4818–4832.

Habimana J de D, Ji J, Sun X. Minireview: Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics. Anal Lett. 2018; 51:2933–2966.

Rutanga JP, Nyirahabimana T. Clinical Significance of Molecular Diagnostic Tools for Bacterial Bloodstream Infections: A Systematic Review. Santos AR, editor. Interdisciplinary Perspect Infect Dis 2016; 2016:6412085.

Coleman JS, Gaydos CA. Molecular Diagnosis of Bacterial Vaginosis: an Update. J Clin Microbiol 2018 ; 56(9).

Piuri M, Rondón L, Urdániz E, Hatfull GF. Generation ofaffinity-tagged fluoromycobacteriophages by mixed assembly of phage capsids. Appl Environ Microbiol. 2013; 79(18):5608–5615.

Gómez-Torres N, Dunne M, Garde S, Meijers R, Narbad A, Ávila M, Mayer MJ. Development of a specific fluorescent phage endolysin for in situ detection of Clostridium species associated with cheese spoilage. Microb Biotechnol. 2018; 11(2):332–345.

Adesanya O, Oduselu T, Akin-Ajani O, Adewumi OM, Ademowo OG. An exegesis of bacteriophage therapy: An emerging player in the fight against anti-microbial resistance. AIMS Microbiol. 2020; 6:204–230.

Kirchhelle C. The forgotten typers: The rise and fall of Weimar bacteriophage-typing (1921–1935). Notes and Records: the Roy Soc J Hist Sci. 2020 ; 74(4):539–565.

Ziebell K, Chui L, King R, Johnson S, Boerlin P, Johnson RP. Subtyping of Canadian isolates of Salmonella enteritidis using Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) alone and in combination with Pulsed-Field Gel Electrophoresis (PFGE) and phage typing.

J Microbiol Methods. 2017; 1(139):29–36.

Mohammed M. Phage typing or CRISPR typing for epidemiological surveillance of Salmonella typhimurium? BMC Res Notes. 2017; 10(1). 578

Ertürk G and Lood R. Bacteriophages as biorecognition elements in capacitive biosensors: Phage and host bacteria detection. Sensors and Actuators, B: Chem. 2018; 258:535– 543.

Richter Ł, Janczuk-Richter M, Niedziółka-Jönsson J, Paczesny J, Hołyst R. Recent advances in bacteriophagebased methods for bacteria detection. Drug Discov Today 2018; 23:448–455.

Wang Z, Wang D, Kinchla AJ, Sela DA, Nugen SR. Rapid screening of waterborne pathogens using phage-mediated separation coupled with real-time PCR detection. Anal Bioanal Chem. 2016; 408(15):4169–4178.

Wisuthiphaet N, Yang X, Young GM, Nitin N. Rapid detection of Escherichia coli in beverages using genetically engineered bacteriophage T7. AMB Expr. 2019 ; 9(1):55.

Meile S, Sarbach A, Du J, Schuppler M, Saez C, Loessner MJ, Kilcher S. Engineered reporter phages for rapid bioluminescence-based detection and differentiation of viable Listeria cells. Appl Environ Microbiol. 2020; 86(11):e00442-20

Hazbón MH, Guarín N, Ferro BE, Rodríguez AL, Labrada LA, Tovar R, Riska PF, Jacobs WR. Photographic and luminometric detection of luciferase reporter phages for drug susceptibility testing of clinical Mycobacterium tuberculosis isolates. J Clin Microbiol. 2003; 41(10):4865–

Minion J, Pai M, Pai M. Bacteriophage assays for rifampicin resistance detection in Mycobacterium tuberculosis: updated meta-analysis. Int J Tuberc Lung Dis. 2010; 14(8): 941-951.

Oda M, Morita M, Unno H, Tanji Y. Rapid Detection of Escherichia coli O157:H7 by Using Green Fluorescent Protein-Labeled PP01 Bacteriophage. Appl Environ Microbiol. 2004; 70(1):527–534.

Tanji Y, Furukawa C, Na S-H, Hijikata T, Miyanaga K, Unno H. Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage. J Biotechnol. 2004; 114(1–2):11–20.

Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012; 7:1147–1171.

Kretzer JW, Lehmann R, Schmelcher M, Banz M, Kim KP, Korn C, Loessner MJ. Use of High-Affinity Cell WallBinding Do ains of Bacteriophage Endolysins for Immobilization and Separation of Bacterial Cells. Appl Environ Microbiol. 2007; 73(6):1992–2000.

Santos SB, Oliveira A, Melo LDR, Azeredo J. Identification of the first endolysin Cell Binding Domain (CBD) targeting Paenibacillus larvae. Sci Rep. 2019; 9(1):2568.

Meile S, Kilcher S, Loessner MJ, Dunne M. Reporter Phage-Based Detection of Bacterial Pathogens: Design Guidelines and Recent Developments. Viruses. 2020 ; 12(9):944.

Paczesny J, Richter Ł, Hołyst R. Recent Progress in the Detection of Bacteria Using Bacteriophages: A Review. Viruses . 2020 ; 12(8):845.

Wang Y, He Y, Bhattacharyya S, Lu S, Fu Z. Recombinant Bacteriophage Cell-Binding Domain Proteins for BroadSpectrum Recognition of Methicillin-Resistant Staphylococcus aureus Strains. Anal Chem. 2020; 92(4):3340–3345.

Gómez-Torres N, Dunne M, Garde S, Meijers R, Narbad A, Ávila M, Mayer MJ. Development of a specific fluorescent phage endolysin for in situ detection of Clostridium species associated with cheese spoilage. Microb Biotechnol. 2018; 11(2):332–345.

Kilcher S and Loessner MJ. Engineering Bacteriophages as Versatile Biologics. Trends Microbiol. 2019; 27:355–367.

Pleška M, Guet CC. Effects of mutations in phage restriction sites during escape from restriction– modification. Biol Lett. 2017 ; 13(12):20170646.

O‟Donnell MR, Larsen MH, Brown TS, Jain P, Munsamy V, Wolf A, Uccellini L, Karim F, de Oliveira T, Mathema B, Jacobs WR, Pym A. Early detection of emergent extensively drug-resistant tuberculosis by flow cytometrybased phenotyping and whole-genome sequencing. Antimicrob Agents Chemother. 2019; 63(4):e01834-18

Kim J, Kim M, Kim S, Ryu S. Sensitive detection of viable Escherichia coli O157:H7 from foods using a luciferasereporter phage phiV10lux. Int J Food Microbiol. 2017; 254:11–17.

Franche N, Vinay M, Ansaldi M. Substrate-independent luminescent phage-based biosensor to specifically detect enteric bacteria such as E. coli. Environ Sci Poll Res. 2017; 24(1):42–51.

Sharp NJ, Molineux IJ, Page MA, Schofield DA. Rapid Detection of Viable Bacillus anthracis Spores in Environmental Samples by Using Engineered Reporter Phages. Appl Environ Microbiol. 2016; 82(8):2380–7.

Born Y, Fieseler L, Thöny V, Leimer N, Duffy B, Loessner MJ. Engineering of Bacteriophages Y2::dpoL1-C and Y2::luxAB for Efficient Control and Rapid Detection of the Fire Blight Pathogen, Erwinia amylovora. Appl Environ Microbiol. 2017 ; 83(12).

Jain P, Weinrick BC, Kalivoda EJ, Yang H, Munsamy V, Vilcheze C, Weisbrod TR, Larsen MH, O‟Donnell MR, Pym A, Jacobs WR. Dual-Reporter Mycobacteriophages (Φ 2 DRMs) Reveal Preexisting Mycobacterium tuberculosis Persistent Cells in Human Sputum. mBio . 2016 ; 7(5).

Wang D, Chen J, Nugen SR. Electrochemical Detection of Escherichia coli from Aqueous Samples Using Engineered Phages. Anal Chem. 2017; 89(3):1650–1657.

Hinkley TC, Garing S, Singh S, le Ny A-LM, Nichols KP, Peters JE, Talbert JN, Nugen SR. Reporter bacteriophage T7 NLC utilizes a novel NanoLuc: CBM fusion for the ultrasensitive detection of Escherichia coli in water. The Analyst 2018; 143(17):4074–4082.

Chen J, Alcaine SD, Jackson AA, Rotello VM, Nugen SR. Development of Engineered Bacteriophages for Escherichia coli Detection and High-Throughput Antibiotic Resistance Determination. ACS Sens. 2017; 2(4):484–489.

Mayer O, Jain P, Weisbrod TR, Biro D, Ho L, Jacobs-Sera D, Hatfull GF, Jacobs WR. Fluorescent Reporter DS6A Mycobacteriophages Reveal Unique Variations in Infectibility and Phage Production in Mycobacteria. J Bacteriol. 2016; 198(23):3220–3232.

Pulkkinen EM, Hinkley TC, Nugen SR. Utilizing in vitro DNA assembly to engineer a synthetic T7 Nanoluc reporter phage for Escherichia coli detection. Integr Biol. 2019; 11(3):63–68.

Wang D, Hinkley T, Chen J, Talbert JN, Nugen SR. Phage based electrochemical detection of Escherichia coli in drinking water using affinity reporter probes. The Analyst 2019; 144(4):1345–152.