Pharmacokinetics and Molecular Docking Study of Siddha Polyherbal Preparation Shailam Against COVID-19 Mutated s Gene

doi.org/10.26538/tjnpr/v6i4.8

Authors

  • Rajalakshmi Shanmugavelan Siddha Clinical Research Unit, Under Central Council for Research in Siddha, Tirupati, Andhra Pradesh, India
  • Mohamed Musthafa M Department of Sirappu Maruthuvam, Govt. Siddha Medical College, Chennai, Tamil Nadu, India

Keywords:

Siddha medicine, COVID-19, Herbal medicine, Alternative medicine, Traditional medicine

Abstract

COVID-19 is a deadly disease; at the time of the first COVID-19 wave (January 2020 to November 2020), so many deaths were reported worldwide. There were no standard conventional treatments and vaccines, so the whole world turned to traditional medicine. Siddha system of medicine is one of the traditional medicines practiced in the southern part of India. Shailam is a polyherbal formulation (licence no. 1189/25D) which was analyzed by molecular docking, with AutoDockVina software, against SARS-CoV-2 Spike Protein (PDB ID 7DDD). Absorption, distribution, metabolism, and excretion (ADME) properties were also recorded for Shailam’s phytocompounds using the online SwissADME tool. The results of the molecular docking study showed that the phytocompounds, like Caryophyllene, Aspidospermidin-17-ol, N,N’Dibenzylidene-3,3’-dichlorobenzidine, Beta-selinene, Curzerene, Germacrene B, Spathulenol, had the highest docking scores: -6.6 Kcal/mol, -8.8 Kcal/mol, -8.7 Kcal/mol, -6.2 Kcal/mol, -6.0 Kcal/mol, -6.6 Kcal/mol, -6.5 Kcal/mol, respectively, and the scores fall within the docking score range of the four standard conventional drugs; Azithromycin, Hydroxychloroquinone, Ivermectin, and Remdesivir which had binding energies of 7.7 Kcal/mol, -5.9 Kcal/mol, -9.2 Kcal/mol, and -7.5 Kcal/mol, respectively. ADME analysis predicted that all of Shailam’s phytocompounds met four Lipinski’s rule of five and have a higher bioavailability score (0.55) as compared to standard conventional drugs, Azithromycin, Hydroxychloroquinone, Ivermectin, and Remdesivir (0.17). Twelve of Shailam’s phytochemical compounds have high GIT absorption and can cross the blood–brain barrier (BBB). In conclusion, Shailam’s phytocompounds show a good docking score and ADME property against SARS-CoV-2 Spike Protein (PDB ID 7DDD) as compared to standard conventional drugs. 

References

Rajalakshmi S, Samraj K, Sathiyarajeswaran P, Kanagavalli K. Preparedness of Siddha System of Medicine in Practitioner Perspective during a Pandemic Outbreak with Special Reference to COVID-19. Cell Med. 2020; 10(4):1–6.

COVID-19 cases by country worldwide 2021 | Statista [Internet]. [cited 2022 Mar 17]. Available from: https://www.statista.com/statistics/1111696/covid19-casespercentage-by-country/

WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data [Internet]. [cited 2022 Mar 17]. Available from: https://covid19.who.int/

When will coronavirus end? WHO chief has a simple answer [Internet]. [cited 2021 Aug 18]. Available from: https://www.livemint.com/

Shailam [Package insert]. Chennai: LINCS Pharmaceuticals; 2021.

Jayashree T and Subramanyam C. Antiaflatoxigenic activity of eugenol is due to inhibition of lipid peroxidation. Lett Appl Microbiol. 1999; 28(3):179-183.

Maralhas A, Monteiro A, Martins C, Kranendonk M, Laires A, Rueff J, Rodrigues AS Genotoxicity and endoreduplication inducing activity of the food flavouring eugenol. Mutagen. 2006; 21(3):199-204.

Wang C, Zhang J, Chen H, Fan Y, Shi Z. Antifungal activity of eugenol against Botrytis cinerea. Trop Plant Pathol. 2010; 35(3):137-143.

Moo CL, Yang SK, Osman MA, Yuswan MH , Yan Loh JY , Lim WM , Lim SH , Lai KS Antibacterial activity and mode of action of β-caryophyllene on Bacillus cereus. Polish J Microbiol. 2020; 69(1):49-54.

Dahham SS, Tabana YM, Ahamed MBK, Majid AMSA. In vivo anti-inflammatory activity of β-caryophyllene, evaluated by molecular imaging. Mol Med Chem. 2016:1-6.

De Oliveira CC, de Oliveira CV, Grigoletto J, Ribeiro LR, Funck VR, Grauncke ACB, de Souza TL , Souto NS, Furian AF , Alencar Menezes IR, OliveiraMS .Anticonvulsant activity of β-caryophyllene against pentylenetetrazol-induced seizures. Epilep Behav. 2016; 56:26-31.

Thomas CV. Amrinone Prevents The Inhibition Of Muscle Pyruvate Dehydrogenase Complex Activity During Sepsis, Shock. 1996; 5(3):229-232.

Alousi AA, Farah AE, Lesher GY, Opalka CJ. Cardiotonic activity of amrinone - win 40680 [5-amino-3,4’-bipyridin-6 (1H)-one]. Circ Res. 1979; 45(5):666-677.

Islam MT, Ayatollahi SA, Zihad SMNK, Phytol antiinflammatory activity: Pre-clinical assessment and possible mechanism of action elucidation. Cellul Mol Biol. 2020; 66(4):264-269.

Gupta K, Taj T, Thansiya B, Kamath JV. Pre-clinical evaluation of hepatoprotective activity of phytol in wistar albino rats. IP Int J Compr Adv Pharmacol. 2019; 4(1):17-20.

Juergens LJ, Worth H, Juergens UR. New Perspectives for Mucolytic, Anti-inflammatory and Adjunctive Therapy with 1,8-Cineole in COPD and Asthma: Review on the New Therapeutic Approach. Adv Ther. 2020; 37(5):1737-1753.

Murata S, Shiragami R, Kosugi C, Tezuka T, Yamazaki M, Hirano A, Yoshimura Y, Suzuki M, Shuto K, Ohkohchi N, Koda K. Antitumor effect of 1, 8-cineole against colon cancer. Oncol Rep. 2013; 30(6):2647-2652.

Singh S, Nair V, Jain S, Gupta YK. Evaluation of antiinflammatory activity of plant lipids containing α-linolenic acid. Indian J Exp Biol. 2008; 46(6):453-456.

Xu MQ, Hao YL, Wang JR, Li ZY, Li H, Feng ZH, Wang H, Wang JW, Zhang X. Antitumor activity of α-linolenic acid-paclitaxel conjugate nanoparticles: In vitro and in vivo. Int J Nanomed. 2021;16:7269-7281.

Jung SW, Thamphiwatana S, Zhang L, Obonyo M. Mechanism of antibacterial activity of liposomal linolenic acid against helicobacter pylori. PLoS One. 2015; 10(3):1-13.

Cartron ML, England SR, Chiriac AI, Josten M , Turner R, Rauter Y , Hurd A , Sahl HG , Jones S , Foster SJ. Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus. Antimicrob Agents Chemother. 2014;58(7):3599-3609.

Walton SF, McKinnon M, Pizzutto S, Dougall A, Williams E, Currie BJ. Acaricidal activity of Melaleuca alternifolia (tea tree) oil: in vitro sensitivity of sarcoptes scabiei var hominis to terpinen-4-ol. Arch Dermatol. 2004 May;140(5):563-6.

De Sousa DP, Nóbrega FFF, De Morais LCSL, De Almeida RN. Evaluation of the anticonvulsant activity of terpinen-4-ol. Zeitschrift fur Naturforsch - Sect C J Biosci. 2009; 64(1-2):1-5.

Schmidt E, Wanner J, Hiiferl M, Jirovetz L, Buchbauer G, Gochev V, Girova T, Stoyanova A, Geissler M. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-thujanol/terpinen- 4-ol, thymol and linalool cultivated in Southern France. Nat Prod Commun. 2012; 7(8):1095-1098.

Nunes TAL, Santos MM, de Oliveira MS, de Sousa JMS, Rodrigues RRL, Sousa PSA, de Araújo AR, Pereira ACTDC, Ferreira GP, Rocha JA, Rodrigues Junior V, da Silva MV, Rodrigues KADF. Curzerene antileishmania activity: Effects on Leishmania amazonensis and possible

action mechanisms. Int Immunopharmacol. 2021; 100:108130.

Dzul-beh ADJ, García-sosa K, Uc-cachón AH, Bórquez J,Loyola LA, Barrios-García HB, Peña-Rodríguez LM, Molina-Salinas GM. In vitro growth inhibition and bactericidal activity of spathulenol against drug-resistant clinical isolates of Mycobacterium tuberculosis. 2019; 29:798-800.

Francisca I, Borges DJ, Lopes T, Calixto D, Pereira SV, Paleo Konno R, Corrêa Pinto TU, Wanderley Tinoco S, Lasunskaia L, Ramos Leal E, Frazão Muzitano IC, Michelle, Anti-mycobacterial and immunomodulatory activity of n -hexane fraction and spathulenol from Ocotea

notata leaves. Rodriguésia , 2021; e01162019:1-14.

Jemal K. Molecular Docking Studies of Phytochemicals of Allophylusserratus Against Cyclooxygenase-2 Enzyme. bioRxiv. 2019; 11:2–8.

Karpiński TM, Kwaśniewski M, Ożarowski M, Alam R. In silico studies of selected xanthophylls as potential candidates against SARS-CoV-2 targeting main protease (Mpro) and papain-like protease (PLpro). Herba Pol. 2021; 67(2):1–8.

Swiss Institute of Bioinformatics [Internet]. [cited 2022 Apr 18]. Available from: http://www.swissadme.ch/

Kehinde I, Ramharack P, Nlooto M, Gordon M. The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals. Heliyon. 2019; 5(10):e02565.

Gao Y, Gesenberg C, Zheng W. Oral Formulations for preclinical studies: Principle, design, and development considerations. Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice: Second Edition. Elsevier Inc.; 2017. 455–495 p.

Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 3(7): 42717.

Hess-Fischl A. Handbook of Drug-Nutrient Interactions, (2nd Ed.)Humana press 2010. 120-121p.

Dong X, Zhang Z.M, Liu F, Wancen Yu, Lin F, Yanhao, Jiang H.Y, Zhenyu H. Genesis of the metamorphic rock from southeastern Lhasa terrane and the MesozoicCenozoic orogenesis. Acta Petrol Sin. 2012; 28(6):1765–1784.

Downloads

Published

2022-04-01

How to Cite

Shanmugavelan, R., & Musthafa M, M. (2022). Pharmacokinetics and Molecular Docking Study of Siddha Polyherbal Preparation Shailam Against COVID-19 Mutated s Gene: doi.org/10.26538/tjnpr/v6i4.8. Tropical Journal of Natural Product Research (TJNPR), 6(4), 502–513. Retrieved from https://tjnpr.org/index.php/home/article/view/84