Post-germination Application of Trichoderma asperellum for the Biocontrol of Macrophomina phaseolina in Cowpea

Main Article Content

Olusola L. Oyesola
Tonjock R. Kinge
Olufisayo A. Kolade
Olawole O. Obembe

Abstract

Cowpea (Vigna unguiculata (L.) Walp.) serves as a food source for humans and forage for animals. However, its production is affected by disease-causing fungi, of which Macrophomina phaseolina is a significant pathogen. Trichoderma was employed as a biofungicide to manage the disease in the screenhouse. Three strains of Trichoderma asperellum were isolated from the soil. The fungal spore suspensions of the Trichoderma strains were prepared, formulated into seven different treatment combinations, and applied to the cowpea potted soil five days after the germination of the cowpea to investigate their biocontrol ability on M. phaseolina and assess their effects on cowpea growth. The experiment's results showed that cowpea plants treated with T. asperellum differed significantly in plant height, stem girth, and leaf number compared to those treated with M. phaseolina alone (p < 0.05). Trt3 (54.6815 cm), Trt1 (54.0125 cm), and Trt5 (52.9375 cm) gave a higher plant height than in control 1 (M. phaseolina-treated cowpea - 44.9667 cm). Also, Trt7 (0.5413) and Trt3 (0.5258) gave a higher stem girth than in control 1 (M. phaseolina-treated cowpea - 0.3333 cm), while Trt6 (20.292) gave a higher leaf number than in control 1 (M. phaseolina-treated cowpea - 8.833). Additionally, Trt3 and Trt7 exhibited disease incidences of 22% and 67%, respectively, compared to control 1, which had a 100% incidence. Meanwhile, Trt7 showed 8% disease severity, compared to control 1, which had 100%. Therefore, post-germination Trichoderma application proved to be an effective strategy for controlling M. phaseolina, and it also has the potential to enhance cowpea biomass for sustainable food security.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Post-germination Application of Trichoderma asperellum for the Biocontrol of Macrophomina phaseolina in Cowpea. (2025). Tropical Journal of Natural Product Research , 9(12), 6356 – 6361. https://doi.org/10.26538/tjnpr/v9i12.58

References

1.Mekonnen TW, Gerrano AS, Mbuma NW, Labuschagne MT. Breeding of vegetable cowpea for nutrition and climate resilience in Sub-Saharan Africa: Progress, opportunities, and challenges. Plants. 2022;11(12):1583. doi:10.3390/plants11121583.

2.Oluwole OO, Aworunse OS, Aina AI, Oyesola OL, Popoola JO, Oyatomi OA, Abberton MT, Obembe OO. A review of biotechnological approaches towards crop improvement in African yam bean (Sphenostylis stenocarpa Hochst. ex A. Rich.). Heliyon. 2021;7(11):e08481. doi:10.1016/j.heliyon.2021.e08481.

3.Popoola JO, Aworunse OS, Ojuederie OB, Adewale BD, Ajani OC, Oyatomi OA, Eruemulor DI, Adegboyega TT, Obembe OO. The exploitation of orphan legumes for food, income, and nutrition security in Sub-Saharan Africa. Front Plant Sci. 2022;13:782140. doi:10.3389/fpls.2022.782140.

4.Sarr A, Bodian A, Gueye MC, et al. Ethnobotanical study of cowpea (Vigna unguiculata (L.) Walp.) in Senegal. J Ethnobiol Ethnomed. 2022;18(6):6. doi:10.1186/s13002-022-00506-y.

5.Affrifah NS, Phillips RD, Saalia FK. Cowpeas: Nutritional profile, processing methods and products—a review. Legume Sci. 2022;4(3):e131. doi:10.1002/leg3.131.

6.Abebe BK, Alemayehu MT. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. J Agric Food Res. 2022;10:100383. doi:10.1016/j.jafr.2022.100383.

7.Masete FM, Munjonji L, Ayisi KK, P M. Cowpea growth and nitrogen fixation performance under different mulch treatments. Agriculture. 2022;12(8):1144. doi:10.3390/agriculture12081144.

8.Omomowo OI, Babalola OO. Constraints and prospects of improving cowpea productivity to ensure food, nutritional security and environmental sustainability. Front Plant Sci. 2021;12:751731. doi:10.3389/fpls.2021.751731.

9.Oyesola OL, Kinge TR, Kolade OA, Obembe OO. Evaluating Pre-planting Trichoderma asperellum Application for Biocontrol of Macrophomina phaseolina in Screenhouse-Grown Cowpea. Trop J Nat Prod Res. 2025;9(10):5114–5121. https://www.tjnpr.org/index.php/home/article/view/7583

10.Mwangi RW, Mustafa M, Charles K, Wagara IW, Kappel N. Selected emerging and reemerging plant pathogens affecting the food basket: A threat to food security. J Agric Food Res. 2023;14:100827. doi:10.1016/j.jafr.2023.100827.

11.Rizzo DM, Lichtveld M, Mazet JAK, et al. Plant health and its effects on food safety and security in a One Health framework: four case studies. One Health Outlook. 2021;3(6). doi:10.1186/s42522-021-00038-7.

12.12. Gai Y, Wang H. Plant disease: A growing threat to global food security. Agronomy. 2024;14(8):1615. doi:10.3390/agronomy14081615.

13.Ayaz M, Li H, Ali Q, Zhao W, Chi K, Shafiq M, Ali F, Yu Y, Yu Q, Zhao T, Yu W, Qi D, Huang K. Bacterial and fungal biocontrol agents for plant disease protection: Journey from lab to field, current status, challenges, and global perspectives. Molecules. 2023;28(18):6735. doi:10.3390/molecules28186735.

14.Parrado LM, Quintanilla M. Plant-parasitic nematode disease complexes as overlooked challenges to crop production. Front Plant Sci. 2024;15:1439951. doi:10.3389/fpls.2024.1439951.

15.Nazarov PA, Baleev DN, Ivanova MI, Sokolova LM, Karakozova MV. Infectious plant diseases: Etiology, current status, problems and prospects in plant protection. Acta Naturae. 2020;12(3):46. doi:10.32607/actanaturae.11026.

16.Geffersa AG, Burdon JJ, Macfadyen S, Thrall PH, Sprague SJ, Barrett LG. The socio-economic challenges of managing pathogen evolution in agriculture. Philos Trans R Soc Lond B Biol Sci. 2023;378(1873):20220012. doi:10.1098/rstb.2022.0012.

17.Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, Liu H, Trivedi P. Climate change impacts on plant pathogens, food security, and paths forward. Nat Rev Microbiol. 2023;1. doi:10.1038/s41579-023-00900-7.

18.Marquez N, Giachero ML, Declerck S, Ducasse DA. Macrophomina phaseolina: General characteristics of pathogenicity and methods of control. Front Plant Sci. 2021;12:634397. doi:10.3389/fpls.2021.634397.

19.Sinha N, Patra SK, Ghosh S. Secretome analysis of Macrophomina phaseolina identifies an array of putative virulence factors responsible for charcoal rot disease in plants. Front Microbiol. 2022;13:847832. doi:10.3389/fmicb.2022.847832.

20.Kaur S, Kumari N, Sharma V. Interplay of stress responses in mungbean cultivars subjected to combined exposure to Macrophomina phaseolina infection and drought stress. Plant Stress. 2024;11:100376. doi:10.1016/j.stress.2024.100376.

21.Lamini S, Kusi F, Cornelius EW, Danquah A, Attamah P, Mukhtaru Z, Awuku FJ, Owusu EY, Acheampong M, Mensah G. Identification of sources of resistance in cowpea lines to Macrophomina root rot disease in Northern Ghana. Heliyon. 2022;8(12):e12217. doi:10.1016/j.heliyon.2022.e12217.

22.Ahmed T, Noman M, Shahid M, Hameed A, Li B. Pathogenesis and disease control in crops: The key to global food security. Plants. 2023;12(18):3266. doi:10.3390/plants12183266.

23.Shoaib A, Khan KA, Awan ZA, Jan BL, Kaushik P. Integrated management of charcoal rot disease in susceptible genotypes of mungbean with soil application of micronutrient zinc and green manure (prickly sesban). Front Microbiol. 2022;13:899224. doi:10.3389/fmicb.2022.899224.

24.Degani O, Chen A, Dimant E, Gordani A, Malul T, Rabinovitz O. Integrated management of the cotton charcoal rot disease using biological agents and chemical pesticides. J Fungi. 2024;10(4):250. doi:10.3390/jof10040250.

25.Deresa EM, Diriba TF. Phytochemicals as alternative fungicides for controlling plant diseases: A comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon. 2023;9(3):e13810. doi:10.1016/j.heliyon.2023.e13810.

26.Besong PN, Kinge TR. Fungi diversity on some fruits and biological control using two plants extracts. J Adv Biol Biotechnol. 2021;24(4):24-38. doi:10.9734/jabb/2021/v24i430209.

27.Haq IU, Rahim K, Yahya G, Ijaz B, Maryam S, Paker NP. Eco-smart biocontrol strategies utilising potent microbes for sustainable management of phytopathogenic diseases. Biotechnol Rep. 2024;44:e00859. doi:10.1016/j.btre.2024.e00859.

28.Naglot A, Goswami S, Rahman I, Shrimali DD, Yadav KK, Gupta VK, Rabha AJ, Gogoi HK, Veer V. Antagonistic potential of native Trichoderma viride strain against potent tea fungal pathogens in North East India. Plant Pathol J. 2015;31(3):278. doi:10.5423/PPJ.OA.01.2015.0004.

29.Oyesola OL, Sobowale AA, Obembe OO. Effectiveness of Trichoderma koningii extract on Aspergillus species isolated from rotting tomato (Solanum lycopersicum Mill.). Trop J Nat Prod Res. 2020;4(11):961-965. doi:10.26538/tjnpr/v4i11.19.

30.Oyesola OL, Kinge RT, Obembe OO. Trichoderma: A review of its mechanisms of action in plant sustainable disease control. IOP Conf Ser Earth Environ Sci. 2025;1492(1):012008. https://doi.org/10.1088/1755-1315/1492/1/012008

31.Degani O, Becher P, Gordani A. Real-time PCR early detection of Trichoderma treatments efficiency against cotton charcoal rot disease. NAPERE. 2023;4:100027. doi:10.1016/j.napere.2023.100027.

32.Mbeyagala EK, Pandey AK, Obuo PJ, Orawu M. Challenges, progress and prospects for sustainable management of soilborne diseases of cowpea. IntechOpen; 2022. doi:10.5772/intechopen.101819.

33.Pandit MA, Kumar J, Gulati S, Bhandari N, Mehta P, Katyal R, Rawat CD, Mishra V, Kaur J. Major biological control strategies for plant pathogens. Pathogens. 2022;11(2):273. doi:10.3390/pathogens11020273.

34.Oyesola OL, Aworunse SO, Oniha MI, Obiazikwor OH, Bello O, Atolagbe OM, Sobowale AA, Popoola JO, Obembe OO. Impact and management of diseases of Solanum tuberosum. Solanum tuberosum - A promising crop for starvation problem. IntechOpen; 2021. Available from: http://dx.doi.org/10.5772/intechopen.98899.

35.Poveda J, Eugui D. Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biol Control. 2022;176:105100. doi:10.1016/j.biocontrol.2022.105100.

36.Bejarano A, Puopolo G. Bioformulation of microbial biocontrol agents for sustainable agriculture. In: De Cal A, Melgarejo P, Magan N, editors. How research can stimulate the development of commercial biological control against plant diseases. Progress in Biological Control, vol 21. Springer, Cham; 2020. doi:10.1007/978-3-030-53238-3_16.

37.Ben-David A, Davidson CE. Estimation method for serial dilution experiments. J Microbiol Methods. 2014;107:214–221. doi:10.1016/j.mimet.2014.08.023.

38.Cho I, Chung S. Sporicidal activities and mechanism of surfactant components against Clostridium sporogenes spores. J Food Sci Technol. 2018;55(11):4675. doi:10.1007/s13197-018-3384-7.

39.Zhang Y, Tian C, Xiao J, Wei L, Tian Y, Liang Z. Soil inoculation of Trichoderma asperellum M45a regulates rhizosphere microbes and triggers watermelon resistance to Fusarium wilt. AMB Express. 2020;10(1):1-13. doi:10.1186/s13568-020-01126-z.

40.Madden LV, Campbell CL. Sampling for plant disease incidence. Phytopathology. 1990;80(5):438-447.

41.Medsger TA Jr, Silman AJ, Steen VD, Black CM, Akesson A, Bacon PA, et al. A disease severity scale for systemic sclerosis: development and testing. J Rheumatol. 1999;26(10):2159–2167.1

42.Kredics L, Büchner R, Balázs D, et al. Recent advances in the use of Trichoderma-containing multicomponent microbial inoculants for pathogen control and plant growth promotion. World J Microbiol Biotechnol. 2024;40:162. doi: 10.1007/s11274-024-03965-5.

43.Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Belabess Z, Barka EA. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms. 2022;10(3):596. doi: 10.3390/microorganisms10030596.

44.Cenobio-Galindo AdJ, Hernández-Fuentes AD, González-Lemus U, Zaldívar-Ortega AK, González-Montiel L, Madariaga-Navarrete A, Hernández-Soto I. Biofungicides Based on Plant Extracts: On the Road to Organic Farming. Int J Mol Sci. 2024;25(13):6879. doi: 10.3390/ijms25136879.

45.Fenta L, Mekonnen H. Microbial Biofungicides as a Substitute for Chemical Fungicides in the Control of Phytopathogens: Current Perspectives and Research Directions. Scientifica. 2024;2024(1):5322696. doi: 10.1155/2024/5322696.

46.Wijesinghe C, Wijeratnam RW, Samarasekara J, Wijesundera R. Development of a formulation of Trichoderma asperellum to control black rot disease on pineapple caused by (Thielaviopsis paradoxa). Crop Prot. 2011;30(3):300-306. doi: 10.1016/j.cropro.2010.11.020.

47.Zin NA, Badaluddin NA. Biological functions of Trichoderma spp. For agriculture applications. Ann Agric Sci. 2020;65(2):168-178. doi: 10.1016/j.aoas.2020.09.003.

48.Qassim WS, Mohamed AH, Hamdoon ZK. Biological control of root rot fungi in cowpea. SABRAO J. Breed. Genet. 2023;56(1):302-309. doi: 10.54910/sabrao2024.56.1.27.

49.Poveda J, Eugui D. Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biol Control. 2022;176:105100. doi: 10.1016/j.biocontrol.2022.105100.