Phytochemical Evaluation and Molecular Docking of Bioactive Compounds from the Roots of Dictyandra arborescens (Welw.) against Plasmodium berghei Protein Targets doi.org/10.26538/tjnpr/v5i2.27

Main Article Content

Uchechi E. Enenebeaku
Chidi E. Duru
Ifeyinwa C. Mgbemena
Ndubuisi C.D Ukwandu
Harriet C. Nwigwe
Conrad K. Enenebeaku
Evangeline N. Okotcha

Abstract

The constant emergence of resistant strains of Plasmodium falciparum has necessitated the continuous screening of traditional plants such that novel and effective antimalarial drugs will be developed. The antiplasmodial activity of the methanol root extract of Dictyandra arborescens against Plasmodium berghei was determined in vivo and the active compounds responsible for the observed activity identified in silico. Column chromatography was used to determine the solvent fraction containing the active compounds. All fractions reduced percentage parasitaemia in the treated mice, and hexane fraction showed significant (p ˂ 0.05) antimalarial activity. The hexane fraction gave two eluates coded EA and EB whose bioactive components were determinedusing Gas Chromatography-Mass Spectrometry (GC-MS). Eluate EA gave 11 compounds (propane 1,2-dichloro propane, hexadecanoic acid, methyl ester, n-hexadecanoic acid, 9,17 octadecadienal, (Z)-, cis-13- octadecenoic acid, methyl ester, 6-octadecenoic acid, methyl ester, (Z)-, heptadecanoic acid, 16-methyl, methyl ester and bis (2-ethylhexyl) phtalate). In comparison, eluate EB gave 16 compounds (carbonic acid, prop-1-en-2-yl tetradecyl ester, 5-octadecene, (E)-, isobutyl tetradecyl carbonate, hexadecanoic acid, methyl ester, n-hexadecanoic acid butyl octadecyl ether, 10-octadecenoic acid, methyl ester, cyclopropaneoctanoic acid, 2-hexyl-2,3-divinyloxirane and carbonic acid, dodecyl 2,2,2-trichloroethyl ester). These compounds were subjected to molecular docking against Lactate dehydrogenase and Plasmepsin II enzymes from P. berghei. Bis(2-ethylhexyl) phthalate and bis(3-methylbutan-2-yl) phthalate gave binding affinity values close to artesunate for the two protein targets. The antimalarial potential of D. arborescens root as a novel source of an antimalarial drug is thus validated.

Article Details

How to Cite
Enenebeaku, U. E., Duru, C. E., Mgbemena, I. C., Ukwandu, N. C., Nwigwe, H. C., Enenebeaku, C. K., & Okotcha, E. N. (2021). Phytochemical Evaluation and Molecular Docking of Bioactive Compounds from the Roots of Dictyandra arborescens (Welw.) against Plasmodium berghei Protein Targets: doi.org/10.26538/tjnpr/v5i2.27. Tropical Journal of Natural Product Research (TJNPR), 5(2), 370-381. https://tjnpr.org/index.php/home/article/view/792
Section
Articles

References

Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016; 21(5):559.

Welz AN, Emberger-Klein A, Menrad K. Why people use herbal medicine: insights from a focus-group study in Germany. BMC Complement Altern Med. 2018; 18:92.

Ali M, Khan T, Fatima K, Ali QUA, Ovais M, Khalil AT, Ullah I, Raza A, Shinwari ZK, Idrees M. Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions. Phytother Res. 2018; 32(2):199-215.

Divatar MC. Herbal therapy. Plant Drug Evolution. 2002; 119:1-11.

Saranraj P, Sivasakthi S, Deepa MS. Phytochemistry of pharmacologically important medicinal plants – A review. Int J Curr Res Chem Pharm Sci. 2016; 3(11):56-66.

Hussein RA and El-Anssary AA. Plants Secondary Metabolites: The key drivers of the pharmacological actions of medicinal plants, Herbal Medicine. Builders PF, IntechOpen, 2018; DOI:10.5772/INTECHOPEN.76139.

Duru IA and Duru CE. Identification and quantification of phytochemicals from Carica papaya Linn (Caricaceae) root extract using GC-FID. JChemSoc Nigeria. 2019; 44(7):1291-1297.

Obbo CJD, Kariuki ST, Gathirwa JW, Olaho-Mukani W, Cheplogoi PK, Mwangi EM. In vitroantiplasmodial, antitrypanosomal and antileishmanial activities of selected medicinal plants from Ugandan flora: refocusing into multicomponent potentials. J Ethnopharmacol. 2019; 229:127-136.

World Health Organization. World Malaria Report. WHO, Geneva 2012.

WHO. World Malaria Report, 2008. WHO/HTM/GMP/2008.1

Kaur H, Mukhtar HM, Singh A, Mahajan. Antiplasmodial medicinal plants: a literature review on efficacy, selectivity and phytochemistry of crude plant extracts. JBAPN. 2018; 8(5):272-294.

Philip K, Elizabeth M, Cheplogoi P, Samuel K. Ethnobotanical survey of antimalarial medicinal plants used in Butebocounty, Eastern Uganda. EJMP. 2017; 21(4):1-22.

Penna-Coutinho J, Cortopassi WA, Oliveira AA, Franca TCC, Krettli AU. Antimalarial activity of Potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS ONE 2011; 6(7):21-31.

Dalziel IM. The useful plants of West Tropical Africa. 2ndEd. Cress, London. 1997; 2:196pp.

Duru IA and Duru CE. Infrared studies and mineral element analysis of the leaf Vernonia amygdalina. WNOFNS 13 2017. 1-9 p.

Fenta M and Kahaliw W. Evaluation of antimalarial activity of hydromethanolic crude extract and solvent fractions of the leaves of Nuxiacongesta R. Br. Ex Fresen (Buddlejaceae) in Plasmodium berghei Infected Mice. JExpPharmacol. 2019; 11:121-134.

Gebrehiwot S, Shumbahri M, Eyado A, Yohannes T. phytochemical screening and in vivo antimalarial activity of two traditionally used medicinal plants of Afar Region, Ethiopia, against Plasmodium berghei in Swiss Albino Mice. J Parasitol Res. 2019; 2:4519298.

Arrey TP, Okalebo FA, Ayong LS, Agbor GA, Guantai AN. Antimalarial activity of a polyherbal product (Nefang) during early and established Plasmodium infection in rodent models. Malar J. 2014; 13:456.

RA Syarif, MSH Wahyuningsih, M Mustofa, N Ngatidjan. Antiplasmodial and onset speed of growth inhibitory activities of Tithoniadiversifolia (Hemsley), A Gray leaf fractions against Plasmodium falciparum. Trop J Pharm Res. 2018; 17(11):2213-2218.

Pakkirisamy M, Kalakandan SK, Ravichandran K. Phytochemical screening, GC-MS, FT-IR Analysis of Methanolic Extract of Curcuma caesia (Black turmeric). Pharmacogn J.2017;9(6):952-956.

Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. (2018); 46(1):363-367.

Johnson TO, Odoh KD, Akinanmi AO, Adegboyega AE. Biochemical evaluation and molecular docking assessment of the anti-inflammatory potential of Phyllanthusnivosus leaf against ulcerative colitis. Heliyon. 2020; 6:e03893.

Lubis RA. Antimalarial activity of ethyl acetate fraction of Bidarasea (Strychnosligustrina) wood against Plasmodium bergheiin vivo. Pharmacogn J. 2007; 7(5):234-240.

Duru CE and Onuh EF. Fatty acid alkyl esters from Vernoniaamygdalina leaf extract as potent antibacterial agents. JChemSoc Nigeria. 2018; 43(2):187-194.

Adeyemi MA , Ekunseitan DA , Abiola SS , Dipeolu MA, Egbeyale LT, Sogunle OM. Phytochemical analysis and GC-MS determination of Lagenariabreviflora R. Fruit. Int J PharmacognPhytochem Res. 2017; 9(7):1045-1050.

Rahuman AA, Gopalakrishan G, Ghouse BS, Arumugan S, Himalayan B. Effects of Feronialimonia on mosquito larvae. Fitoterapia. 2000; 71:553-559.

Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas MC. Anti-inflammatory and antioxidant properties of n-hexadecanoic acid: structural evidence and Kinetic assessment. ChemBiol Drug Des. 2012; 80:434-439.

Rajeswari G, Murugan M, Mohan VR. GC-MS analysis of bioactive components of HugoniamystaxL. (Linaceae). Res J Pharm BiolChem Sci. 2013; 29(29):818-824.

Singh R and Chaturvedi P. Phytochemical characterization of rhizome, fruit, leaf and callus of Rheum emodi Wall. using GC-MS. Pharmacogn J. 2019; 11(3):617-623.

Tyagi T and AgarwalM. Phytochemical screening and GCMS analysis of bioactive constituents in the ethanolic extract of Pistiastratiotes L. and Eichhorniacrassipes (Mart.) solms. J PharmacognPhytochem. 2017; 6(1):195-206.

Elaiyaraja A and Chandramohan C. Comparative phytochemical profile of Crinum defixumKer Gawler leaves using GC-MS. J Drug delivTher. 2018; 8(4):365-380.

Habib MR and Karim MR. Antimicrobial and cytotoxic activity of bis(2-ethylhexyl) phthalate. Mycobiology. 2009; 6(3):21-29.

Habib MR and Karim MR. Antitumour evaluation of di(2-ethylhexyl) phthalate (DEHP) isolated from Calotropis gigantean L. flower. Acta Pharm. 2012; 62(4):607-615.

Narajani K, Mangammi U, Muvva V, Poda S, Munaganti RK. Antimicrobial potential of Streptomyces cheonanensisVUK-A from mangrove origin. Int J Pharm Pharm Sci. 2016; 8(3):53-57.

Singh R, Dar SA, Sharma P. antibacterial activity and toxicological evaluation of semi purified hexane extract of Urticadivica leaves. Res J Med Plant. 2012; 6(2):123-135.

Asghar SF and Choudhary MI. GC-MS profile and antibacterial efficacy of Acacia modestawall against dental pathogens. J Biol Sci. 2011;6(24):2024-2029.

Mishra PM and Sree A. Fatty acid profile, volatiles, and antibacterial screening of lipids of the sponge Syphonodictyoncoralliphagnum collected from the Bay of Bengal (Orissa coast). Asian J Chem. 2009; 21(6):4429-4434.

Micha R and Mozaffarian S. Saturated fat and cardiometabolic risk factor, coronary heart disease, stroke and diabetes: A fresh look at the evidence. Lipids. 2010; 45:893-905.

Singh R and Chaturvedi P. Phytochemical characterization of rhizome, fruit, leave and callus of Rheum emodi wall using GC-MS. Pharmacogn J. 2019; 11(3):617-623.

Ramalakshmi S, Muthuchalian K, Chudry M. Analysis of bioactive constituents from the ethanolic leave extract of Tabebuiarosea (Bertol) DC by Gas chromatography-mass spectrometry. Int J Chemtech Res. 2011; 3(3):1054-1059.

Yesu RJ, Paul M, Joy V. Chemical compounds investigation of Cassia auriculata seeds: A potential folklore medicinal plant. Asian J Plant Sci Res. 2012; 2:187-192.

Sessions RB, Dewar Victoria, Clarke RA, Holbrook JJ. A model of Plasmodium falciparum lactate dehydrogenase and its implications for the design of improved antimalarials and the enhanced detection of parasitaemia. Protein Eng.2017; 10(4):301-306.

Royer RE, Deck LM, Campos NM, Hunsaker DL, VanderJagt DL. Biologically active derivaties of Gossypol (I): synthesis and antimalarial activities of periacylatedGossylic Nitriles.J Med Chem.2006;18(6):102-109.

Winter VJ, Cameron A, Tranter R, Sessions RB, Brady RL. Crystal structure of Plasmodium berghei Lactate Dehydrogenase indicates the unique structures of these enzymes are shared across the Plasmodium genus. MolBiochemParasitol.2003; 131:1-12.

Gulati M, Narula A, Vishnu R, Katyal G, Negi A, Ajaz I, Narula K, Chauhan G, Kant R, Lumb V, Babbar S, Wadehra NR, Bhaskar D. Plasmepsin II as a potential Drug Target for Resistant Malaria. DU J Undergrad Res and Innova.2015; 1(3):85-95.

Fracis SE, Sullivan DJ, Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol. 2014; 51:97-123.

Duru CE, Duru IA, Bilar A. Computational investigation of sugar fermentation inhibition by bergenin at the pyruvate decarboxylateisoenzyme 1 target of Scharomycescervisiae.J Med Plants Stud. 2020; 8(6):21-25.

Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Li PW, Tang Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J ChemInf Model.2012; 52:3099-3105.

Duru IA and Duru CE. Molecular docking of compounds in the essential oil of Ocimiumgratissimum leaf against PIM-1 kinase of Escherichia coli. EJ-CHEM. 2020; 1(6):1-4.