Insecticidal and Larvicidal Activities of the Acetone Extract, Fractions, and Volatile Compounds of Dennettia tripetala (G. Baker) Seeds, and Anticholinesterase Activity of the Identified Compounds
Main Article Content
Abstract
The plant, Dennettia tripetala (G. Baker), is renowned for its insecticidal potential. This study aimed to isolate insecticidal and larvicidal compounds from its seeds and to explore their possible mechanism of action. Bioassay-guided fractionation of the acetone extract, tested against adult Rhyzopertha dominica (F.), Sitophilus oryzae (L.), and 3rd instar larvae of Aedes aegypti (L.), yielded 1-nitro-2-phenylethane (NPE), nerolidol, and linalool. Gas Chromatography–Mass Spectrometry revealed the components of the most active fraction and a selected active subfraction, while Column Chromatography and High-Performance Liquid Chromatography were employed for isolation. Electron Ionisation-Mass Spectrometry, Nuclear Magnetic Resonance, and Fourier Transform-Infrared Spectroscopy confirmed all structures. NPE was the predominant compound (83.8%) in the hexane fraction and showed strong activity against R. dominica (LD₅₀: 44.93 ± 0.00 µg/cm²) and S. oryzae (68.24 ± 0.87 µg/cm²); however, it was inactive against A. aegypti larvae at 200 ppm. Nerolidol showed no activity, but a synergistic larvicidal effect emerged in the second hexane subfraction. Linalool, being highly volatile, was not further assayed. None of the compounds inhibited acetylcholinesterase at 0.5 mM, suggesting that NPE acts via a non-cholinergic mechanism. These findings establish NPE as the major insecticidal principle of D. tripetala seeds and reveal novel synergistic interactions among its constituents. The results underscore the capacity of this plant’s volatile components in developing eco-friendly insecticides, offering prospects for safer pest management strategies.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Chidege MY, Venkataramana PB, Ndakidemi PA. Enhancing food grains storage systems through insect pest detection and control measures for maize and beans: Ensuring food security post-COVID-19 Tanzania. Sustainability 2024; 16(5):1767. Doi:10.3390/su16051767.
2.Nebbak A, Almeras L, Parola P, Bitam I. Mosquito vectors (Diptera: Culicidae) and mosquito-borne diseases in North Africa. Insects. 2022; 13(10):962. Doi:10.3390/insects13100962.
3.Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, Saati, AA, Wahab S, Elbendary EY, Kambal N, Abdelrahman MH, Hussain, S. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon. 2024; 10(7):e29128. Doi:10.1016/j.heliyon.2024.e29128.
4.Onen H, Luzala MM, Kigozi S, Sikumbili RM, Muanga CK, Zola EN, Wendji SN, Buya AB, Balciunaitiene A, Viškelis J, Kaddumukasa MA, Memvanga PB. Mosquito-borne diseases and their control strategies: An overview focused on green-synthesized plant-based metallic nanoparticles. Insects. 2023; 14(3):221. Doi:10.3390/insects14030221.
5.Barathi S, Sabapathi N, Kandasamy S, Lee J. Present status of insecticide impacts and eco-friendly approaches for remediation—a review. Environ Res. 2024; 240(Part 1):117432. Doi:10.1016/j.envres.2023.117432.
6.Khursheed A, Rather MA, Jain V, Wani AR, Rasool S, Nazir R, Malik NA, Majid SA. Plant-based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations, and regulatory aspects. Microb Pathog. 2022; 173(Part A):105854. Doi:10.1016/j.micpath.2022.105854.
7.Ngegba PM, Cui G, Khalid MZ, Zhong G. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture. 2022; 12(5):600. Doi:10.3390/agriculture12050600.
8.Suh, PF, Elanga-Ndille, E., Tchouakui, M. Impact of insecticide resistance on malaria vector competence: a literature review. Malar J. 2023; 22(1):19 Doi: 10.1186/s12936-023-04444-2.
9.Iseghohi SO. A review of the uses and medicinal properties of Dennettia tripetala (Pepperfruit). Med Sci. 2015; 3:104–111. Doi:10.3390/medsci3040104.
10.Muhammed D, Adebiyi HY, Bernard BO, Alawode RA, Abdullateef L, Okunlola BM, Jonathan I, Eustace EB. Dennettia tripetala (Pepper Fruit), a review of its ethnomedicinal use, phytoconstituents, and biological properties. GSC Adv Res Rev. 2021; 6:35–43. Doi:10.30574/gscarr.2021.6.3.0024.
11.Akinbuluma MD, Adepetun MT, Yeye EO. Insecticidal effects of ethanol extracts of Capsicum frutescens and Dennettia tripetala against Sitophilus zeamais Motschulsky on stored maize. Int J Res Agric For. 2015; 2(11):1–7.
12.Idowu, O, Alabi, O. Contact toxicity and feeding deterrent activity of Dennettia tripetala Bak. and Jatropha curcas L. leaf extracts against Spodoptera frugiperda J. E. Smith. J Basic Appl Zool. 2024; 85(59):1-10. Doi:10.1186/s41936-024-00413-6
13.Oyemitan IA, Elusiyan CA, Akinkunmi EO, Obuotor EM, Akanmu MA, Olugbade TA. Memory-enhancing, anticholinesterase, and antimicrobial activities of β-phenylnitroethane and essential oil of Dennettia tripetala Baker F. J Ethnopharmacol. 2019; 229:256–261. Doi:10.1016/j.jep.2018.10.017.
14.Adesida SA, Iyebeye MI, Aina OO. Chemical composition and healing potential of essential oil of Dennettia tripetala on methicillin-resistant Staphylococcus aureus: infected wound model. Beni-Suef Univ J Basic Appl Sci. 2022; 11(91):1-12. Doi:10.1186/s43088-022-00272-6
15.Pantoja LVPS, Fonseca ECM, Souza-Junior FJC, da Conceição BC, Farias SV, da Silva JKR, Maia JGS, Silva, PIC, Freitas JJS, Prediger RD, Campos DL, Fontes-Júnior EA, Maia CSF. 1-Nitro-2-phenylethane: a promising phytoconstituent to modulate neuroinflammation and oxidative stress with repercussions on neurological and psychiatric disorders. Front Pharmacol. 2025;16:1-11 Doi.org/10.3389/fphar.2025.1552295
16.Oyemitan IA, Elusiyan CA, Akanmu MA, Olugbade TA. Hypnotic, anticonvulsant, and anxiolytic effects of 1-nitro-2-phenylethane isolated from the essential oil of Dennettia tripetala in mice. Phytomedicine. 2013;20(12):1315–1322. Doi:10.1016/j.phymed.2013.07.005.
17.Corrêa EJA, Carvalho FC, de Castro Oliveira JA, Bertolucci SKV, Scotti MT, Silveira CH, Elucidating the molecular mechanisms of essential oils' insecticidal action using a novel cheminformatics protocol. Sci Rep. 2023;13(1):4598. Doi:10.1038/s41598-023-29981-3.
18.Popescu IE, Gostin IN, Blidar CF. An overview of the mechanisms of action and administration technologies of the essential oils used as green insecticides. AgriEngineering. 2024;6(2):1195–1217. Doi:10.3390/agriengineering6020068.
19.Strong RG, Sbur DE, Partida GJ. Rearing stored-product insects for laboratory studies: lesser grain borer, granary weevil, rice weevil, Sitophilus zeamais, and Angoumois grain moth. J Econ Entomol. 1967;60(4):1078–1082.
20.Couret J, Dotson E, Benedict MQ. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS One. 2014;9(2):e87468. Doi:10.1371/journal.pone.0087468.
21.Ugheighele SE, Imafidon KE, Choudhary MI, Shakil A, Khan M, Sherwani ZA, Ul-Haq Z. Anti-urease and cytotoxic activity of 1-nitro-2-phenylethane and nerolidol: Two major compounds isolated from the seeds of Dennettia tripetala. Med Chem Res. 2020;29:1874–1881. Doi:10.1007/s00044-020-02607-3.
22.Remón C, Lobbia P, Zerba E, Mougabure-Cueto G. A methodology based on insecticide-impregnated filter paper for monitoring resistance to deltamethrin in Triatoma infestans field populations. Med Vet Entomol. 2017;31(4):414–426. Doi:10.1111/mve.12252.
23.Scalvenzi L, Radice M, Toma L, Severini F, Boccolini D, Bella A, Guerrini A, Tacchini M, Sacchetti G, Chiurato M, Romi R, Di Luca M. Larvicidal activity of Ocimum campechianum, Ocotea quixos, and Piper aduncum essential oils against Aedes aegypti. Parasite (Paris, France). 2019;26(23):1-8. Doi:10.1051/parasite/2019024.
24.Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95. Doi:10.1016/0006-2952(61)90145-9.
25.Ukeh DA, Oku EE, Udo IA, Nta AI, Ukeh JA. Insecticidal effect of fruit extracts from Xylopia aethiopica and Dennettia tripetala (Annonaceae) against Sitophilus oryzae (Coleoptera: Curculionidae). Chil J Agric Res. 2012;72(2):195–200.
26.Egharevba HO, Idah EA. Major compounds from the essential oil of the fruit and comparative phytochemical studies of the fruits and leaves of Dennettia tripetala Barker F. found in north central Nigeria. Int J Pharmacogn Phytochem Res. 2015;7:1262–1266.
27.Ayeni G, Larayetan AR, Yahaya A, Emmanuel TF, Onoja AD, Falola OO, Bello AO, Ogundipe E. Chemical elucidation, microbial growth, and free radical inhibitory effects of Dennettia tripetala fruit: In vitro and in vivo model experiments. Trop J Nat Prod Res. 2023;7(3):2631–2641. Doi.org/10.26538/tjnpr/v7i3.25.
28.Jyotsna B, Patil S, Prakash YS, Rathnagiri P, Kavi Kishor PB, Jalaja N. Essential oils from plant resources as potent insecticides and repellents: Current status and future perspectives. Biocatal Agric Biotechnol. 2024;61:103395. Doi:10.1016/j.bcab.2024.103395.
29.Okonkwo EU, Okoye WI. The efficacy of four seed powders and essential oils as protectants of cowpea and maize grains against infestation by Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae) in Nigeria. Int J Pest Manag. 1996;42(3):143–146. Doi:10.1080/09670879609371985.
30.Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger, R, Yao H, Markley JL BioMagResBank. Nucleic Acids Res. 2008;36:D402–D408. Doi:10.1093/nar/gkm957.
31.Agbakwuru EOP, Ugochukwu EN, Osisiogu IUW. Some nitroalkanes as protectants of stored cowpeas and maize against insect pests. Niger J Sci.. 1978;12:495–504.
32.Dos Santos NSS, Fonseca S, Almeida FF, Belo E, Siqueira M, Dos Santos Niculau E, Silva S, Santos DA, Provasi PF, Andrade-Filho T, Gester R, Cunha AR. Biotransformation of 1-nitro-2-phenylethane ⟶ 2-phenylethanol from fungi species of the Amazon biome: an experimental and theoretical analysis. J Mol Model. 2023;29(8):223. Doi: 10.1007/s00894-023-05595-4. PMID: 37402028.
33.Benelli G, Pavela R, Drenaggi E, Desneux N, Maggi F. Phytol, (E)-nerolidol and spathulenol from Stevia rebaudiana leaf essential oil as effective and eco-friendly botanical insecticides against Metopolophium dirhodum. Ind Crops Prod. 2020;155:112844. Doi:10.1016/j.indcrop.2020.112844.
34.Ghoneim K, Hamadah KH, Selim S, Waheeb H. Biopesticidal potential of nerolidol, a sesquiterpene compound, and its drastic impact on growth and metamorphosis of the cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). Sch Acad J Biosci. 2021;9(2):36-57. Doi:10.36347/sajb.2021.v09i02.004
35.Diksha D, Singh S, Mahajan E, Sohal SK. Immunomodulatory, cyto-genotoxic, and growth regulatory effects of nerolidol on melon fruit fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Toxicon. 2023;233(2):107248. Doi:10.1016/j.toxicon.2023.107248.
36.Kordali Ş, Usanmaz A, Bayrak N, Çakır A. Fumigation of volatile monoterpenes and aromatic compounds against adults of Sitophilus granarius (L.) (Coleoptera: Curculionidae). J Appl Bot Food Qual. 2017;90:89–98.
37.Moura EdaS, Faroni LRD, Zanuncio JC, Heleno FF, Prates LHF, Rodrigues AAZ. Insecticidal activity of Ocimum basilicum essential oil and of its major constituents, linalool and estragole, against Callosobruchus maculatus (Coleoptera: Chrysomelidae). Rev Contemp. 2023;3(2):1119–1143. Doi:10.56083/RCV3N2-027.
38.Pavela R, Novák M. Insecticidal Activity of Some Major Essential Oil Components against Metopolophium dirhodum and Its Predators. Plants. 2024;13(13):1-11. Doi:10.3390/plants13131863
39.Quarshie M, Asare SK, Dadzie SE, Mbata G, Osekre EA. Toxicity and protectant potential of linalools (monoterpenoid) against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) infestation in stored maize. J Entomol Nematol. 2024;16(2):24–33. Doi:10.5897/JEN2024.0288.
40.Anyaele OO, Amusan AAS. Toxicity of hexanoic extracts of Dennettia tripetala (G. Baxer) on larvae of Aedes aegypti (L.). Afr J Biomed Res. 2003;6(1):49–53. Doi:10.4314/ajbr.v6i1.54023.
41.Serdeiro MT, Dias TD, de Lima NTR, Barbosa-Filho JM, Belato RS, Santos-Mallet JRD, Maleck M. Study on Morphological Changes and Interference in the Development of Aedes aegypti Caused by Some Essential Oil Constituents. Trop. Med. Infect. Dis. 2023;8(9):440. Doi:10.3390/tropicalmed8090440
Lima SC, Oliveira AC, Costa MLL, Abensur DD, dos Santos Andrade AT, Souza HV, Tavares CPS, Roque, RA. Larvicidal effect and mechanism of action of the essential oil and major compound from Piper brachypetiolatum (Piperaceae) against Aedes aegypti (Linnaeus, 1762) larvae, with protection of non-target aquatic animals. J Pest Sci. 2025;98(2):661-667. Doi:10.1007/s10340-024-01861-3.
42.Fujiwara GM, Annies V, de Oliveira CF, Lara RA, Gabriel MM, Betim FC, Nadal JM, Farago PV, Dias JF, Miguel OG, Miguel MD, Marques FA, Zanin SM. Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate, and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotoxicol Environ Saf. 2017;139:238–244. Doi:10.1016/j.ecoenv.2017.01.046.
43.Kumar R, Mittal P, Airi M. Bioactivity of Linalool Against Culex quinquefasciatus: Repellent and Larvicidal Evaluations. Arch Insect Biochem Physiol. 2025; Sep;120(1):e70098. Doi:10.1002/arch.70098.
44.Spinozzi E, Ferrati M, Cappellacci L, Petrelli R, Baldassarri C, Morshedloo MR, Maggi F, Pavela R. Major monoterpenoids from Dracocephalum moldavica essential oil act as insecticides against Culex quinquefasciatus with synergistic and antagonistic effects. Ind Crops Prod. 2024;219:119060. Doi:10.1016/j.indcrop.2024.119060.
45.Devrnja N, Milutinović M, Savić J. When Scent Becomes a Weapon—Plant Essential Oils as Potent Bioinsecticides. Sustainability. 2022;14(11):1-16. Doi:10.3390/su14116847.
46.Scalerandi E, Flores GA, Palacio M, Defagó MT, Carpinella MC, Valladares G, Bertoni A, Palacios SM. Understanding synergistic toxicity of terpenes as insecticides: Contribution of metabolic detoxification in Musca domestica. Front Plant Sci. 2018;9:1-9. Doi:10.3389/fpls.2018.01579.
47.Jankowska M, Rogalska J, Wyszkowska J, Stankiewicz M. Molecular targets for components of essential oils in the insect nervous system—A review. Molecules. 2017;23(1):34–53. Doi:10.3390/molecules23010034.
48.Bektašević M, Politeo O. Biological application of essential oils and essential oil components in terms of antioxidant activity and inhibition of cholinesterase enzymes. [Online]. In: IntechOpen. 2022 [cited 2025 Oct 4]. Available from: https://doi.org/10.5772/intechopen.102874.


