Molecular Docking and Dynamics Simulation of Holothuria scabra In Non-Small Cell Lung Cancer Through Inhibition of EGFR and KRAS Pathways

Authors

  • Ikhwandi C. Nugraha School of Medicine, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar, Indonesia 90221
  • Ami Febriza Physiology Department, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar, Indonesia 90221

DOI:

https://doi.org/10.26538/tjnpr/v9i10.50

Keywords:

Kirsten Rat Sarcoma Viral Oncogene Homolog, Epidermal Growth Factor Receptor, Holothuria scabra, Molecular Dynamic, Molecular Docking, Non-Small Cell Lung Cancer

Abstract

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality worldwide, highlighting the urgent need for novel therapeutics to overcome resistance and improve patient outcomes. This study employed an in silico pipeline to evaluate the potential of bioactive compounds from Holothuria scabra as inhibitors of epidermal growth factor receptor (EGFR) and KRAS, which are key NSCLC drivers. Selected H. scabra compounds retrieved from PubChem were screened for toxicity using ProTox 3.0, docked with PyRx/AutoDock Vina against EGFR (PDB: 2ITY) and KRAS (PDB: 7LGI) with Lazertinib as a comparator; the top-ranked complexes were further analyzed through 100 ns molecular dynamics simulations in YASARA (AMBER14/TIP3P) to assess stability. Several H. scabra ligands demonstrated stronger docking affinities than Lazertinib (e.g., C3: EGFR ΔG = −9.4 kcal·mol; C4: KRAS ΔG = −8.7 kcal·mol), while toxicity predictions indicated that all compounds were nontoxic. Docking analysis further revealed that compounds C3, C5, and C8 exhibited stronger affinities toward EGFR, with C3 interacting with key binding residues (VAL726, LYS745, and ASP855). Compounds C4, C3, and C7 showed superior affinities for KRAS, with C4 binding to critical residues (LYS117 and LYS147), similar to Lazertinib. Molecular dynamics simulations confirmed that the top ligands, particularly C3 and C4, maintained stable interactions without inducing significant protein unfolding or persistent root mean square deviation fluctuations. These findings indicate that H. scabra-derived ligands, especially C3 and C4, represent promising in silico candidates for subsequent biochemical and cellular validation as potential NSCLC inhibitors..

References

1.Nurcahyanti ADR, Tenia TF, Candra F. PTEN-Akt/mTOR expression level in A549 lung cancer cells in response to cisplatin, carotenoids, and their combination. Trop J Nat Prod Res. 2024;8(1):5774–5778.

2.Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–263.

3.Ji Yuting Ji, Yunmeng Zhang, Siwen Liu, Jingjing Li, Qianyun Jin, Jie Wu, Hongyuan Duan, Xiaomin Liu, Lei Yang, Yubei Huang. The epidemiological landscape of lung cancer: current status, temporal trend and future projections based on the latest estimates from GLOBOCAN 2022. J Natl Cancer Cent. 2025;5(3):278–286.

4.Andriani Y, Kristina SA, Wiedyaningsih C. Estimation of direct medical cost (DMC) of cancer in Indonesia. Majalah Farmaseutik. 2021;17(3):251–255.

5.Alduais Y, Zhang H, Fan F, Chen J, Chen B. Non-small cell lung cancer (NSCLC): a review of risk factors, diagnosis, and treatment. Medicine (Baltimore). 2023;102(8):e32899.

6.Kirubhanand C, Merciline Leonora J, Anitha S, Sangeetha R, Nachammai KT, Langeswaran K, Gowtham Kumar S. Targeting potential receptor molecules in non-small cell lung cancer (NSCLC) using in silico approaches. Front Mol Biosci. 2023;10:1124563.

7.Melosky B, Kambartel K, Häntschel M, Bennetts M, Nickens DJ, Brinkmann J, Kayser A, Moran M, Cappuzzo F. Worldwide prevalence of epidermal growth factor receptor mutations in non-small cell lung cancer: a meta-analysis. Mol Diagn Ther. 2022;26(1):7–18.

8.Lim TKH, Skoulidis F, Kerr KM, Novello S, Dooms C, Shames DS, Tan DS-W, Lopes G, Vansteenkiste J, Dingemans A-MC, Ahn M-J, de Marinis F. KRAS G12C in advanced NSCLC: prevalence, co-mutations, and testing. Lung Cancer. 2023;184:107293. doi:10.1016/j.lungcan.2023.107293.

9.Sains R, Kelautan DT, Sultan D, Muhammad D, Ramadhan F. The Role of Government Policies in Managing Indonesia’s Marine Resources. Marine Science and Technology Research. 2024;7(1):34–40.

10.Wargasetia TL, Ratnawati H, Widodo N, Widyananda MH. Antioxidant and anti-inflammatory activity of sea cucumber (Holothuria scabra) active compounds against KEAP1 and iNOS protein. Bioinform Biol Insights. 2023;17:1–12

11.Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med. 2021;137:104851.

12.Zare A, Izanloo S, Khaledi S, Ahmadi M, Hosseini SA, Asadzadeh Z, Khazaei S, Ferns GA, Avan A, Soleimanpour S. A bibliometric and in silico-based analysis of anti-lung cancer compounds from sea cucumber. Mar Drugs. 2023;21(5):281.

13.Hossain A, Dave D, Shahidi F. Antioxidant potential of sea cucumbers and their beneficial effects on human health. Mar Drugs. 2022;20(8):521.

14.Diningrat S, Diky MEK. Anti-acne and antibacterial bioactivity properties of teak (Tectona grandis) flower essential oil. Trop J Nat Prod Res. 2023;7(11):2001–2006.

15.Hardono H, Soetrisno S, Purwanto B, Wasita B, Nurwati I, Pamungkasari P. In silico study of the antidiabetic effect of ethyl acetate fraction of banana bract in diabetic rats. Trop J Nat Prod Res. 2024;8(11):1029–1036. doi:10.26538/tjnpr/v8i11.7.

16.Banerjee P, Kemmler E, Dunkel M, Preissner R. ProTox-3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024;52(W1):W513–W520.

17.Makiyah NN, Sri USD. In silico toxicity prediction of bioactive compounds of Dioscorea alata L.. Trop J Nat Prod Res. 2022;6(10):1587–1596.

18.Xu X, Huang M, Zou X. Docking-based inverse virtual screening: methods, applications, and challenges. Biophys Rep. 2018;4(1):1–16.

19.Agu PC, Afiukwa CA, Orji OU, Ezeorba TP, Agu CM, Nwankwo AP, Ugwuoke CE, Okpala OE, Chukwudozie KI, Okereke OE, Onoh UE, Ani OC, Onwe CS, Ogugua VN, Egba SI. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in disease management. Sci Rep. 2023;13(1):13398.

20.Ayu Kartika W, Affan Silalahi A, Rambe R, Putra Fattara F. Molecular docking of meniran (Phyllanthus niruri L.) against tyrosine kinase inhibition as an anticancer agent. Indones J Pharm Clin Res. 2024;7(2):14–024.

21.Ouassaf M, Belaidi S, Mogren Al-Mogren M, Chtita S, Ullah Khan S, Thet Htar T. Combined docking methods and molecular dynamics to identify effective antiviral 2,5-diaminobenzophenone derivatives against SARS-CoV-2. J King Saud Univ Sci. 2021;33(2):101352.

22.Yuli Astuti PD, Fadilah F, Promsai S, Bahtiar A. Integrating molecular docking and molecular dynamics simulations to evaluate active compounds of Hibiscus schizopetalus for obesity. J Appl Pharm Sci. 2024;14(06):070–078.

23.Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25(9):1157–1174.

24.Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A. 2001;105(43):9954–9960.

25.Deka A, Saikia V. Prediction of ACE-inhibitory and antioxidant peptides from storage proteins of edible seeds and nuts using in silico approaches. Sustain Food Proteins. 2023;1(2):84–98.

26.Widyananda MH, Pratama SK, Samoedra RS, Sari FN, Kharisma VD, Ansori ANM, Antonius Y. Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitors for non-small cell lung cancer (NSCLC) associated proteins. J Pharm Pharmacogn Res. 2021;9(4):484–496.

27.Zhang R, Wen H, Lin Z, Li B, Zhou X. Artificial intelligence-driven drug toxicity prediction: advances, challenges, and future directions. Toxics. 2025;13(7):525.

28.Swiatnicki MR, Rennhack JP, Ortiz MMO, Yoshida K, Yao L, Zeng Q, Crouch J, Crespo VO, Wang Y, Ball D, Stevenson S, Gan C, Singh S, Asara JM, Janne PA, Solomon B, Sato M, Janne P, Bivona TG. Elevated phosphorylation of EGFR in NSCLC due to mutations in PTPRH. PLoS Genet. 2022;18(9):e1010362.

29.Santarpia M, Ciappina G, Spagnolo CC, Squeri A, Passalacqua MI, Aguilar A, Gonzalez-Cao M, Giovannetti E, Silvestris N, Rosell R. Targeted therapies for KRAS-mutant non-small cell lung cancer: from preclinical studies to clinical development a narrative review. Transl Lung Cancer Res. 2023;12(2):346–368.

30.Ferreira A, Pereira F, Reis C, Oliveira MJ, Sousa MJ, Preto A. Crucial Role of Oncogenic KRAS Mutations in Apoptosis and Autophagy Regulation: Therapeutic Implications. Cells. 2022;11(14):2183.

31.Paul SK, Saddam M, Tabassum N, Hasan M. Molecular dynamics simulation of wild and mutant proteasome subunit beta type 8 (PSMB8) protein: implications for restoration of inflammation in experimental autoimmune encephalomyelitis pathogenesis. Heliyon. 2025;11(1):e41166.

32.Koshy C, Parthiban M, Sowdhamini R. 100 ns molecular dynamics simulations to study intramolecular conformational changes in Bax. J Biomol Struct Dyn. 2010;28(1):71–83.

33.Fatriansyah JF, Boanerges AG, Kurnianto SR, Pradana AF, Fadilah, Surip SN. Molecular dynamics simulation of ligands from Anredera cordifolia (binahong) to the main protease (Mpro) of SARS-CoV-2. J Trop Med. 2022;2022:1178228.

Downloads

Published

2025-10-30

How to Cite

Molecular Docking and Dynamics Simulation of Holothuria scabra In Non-Small Cell Lung Cancer Through Inhibition of EGFR and KRAS Pathways. (2025). Tropical Journal of Natural Product Research , 9(10), 5077 – 5084. https://doi.org/10.26538/tjnpr/v9i10.50