Synergistic Inhibition of Chronic Myeloid Leukemia: Combining Imatinib and Naringin to Overcome Drug Resistance

Main Article Content

Kiranmai Gudime-tla
Rakesh Barik

Abstract

Chronic Myeloid Leukemia (CML) treatment with Imatinib often encounters the challenge of drug resistance, limiting its long-term efficacy. This study aimed to evaluate the cytotoxic effects and underlying mechanisms of Naringin, both alone and in combination with Imatinib, on Imatinib-sensitive (K562-S) and Imatinib-resistant (K562-R) CML cell lines. Imatinib resistance in K562 cells was induced through a stepwise exposure to the drug. Cytotoxicity was assessed using the MTT assay, while flow cytometry was employed to determine the expression levels of P-glycoprotein (P-gp), extracellular signal-regulated kinase (ERK), and protein kinase B (AKT). Molecular docking studies were conducted to explore potential interaction mechanisms. The combination treatment significantly reduced cell viability and downregulated P-gp, ERK, and AKT expression in both cell lines, indicating a synergistic effect. These findings suggest that Naringin can potentiate the therapeutic efficacy of Imatinib, offering a promising strategy to overcome drug resistance and improve clinical outcomes in CML management.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Synergistic Inhibition of Chronic Myeloid Leukemia: Combining Imatinib and Naringin to Overcome Drug Resistance. (2025). Tropical Journal of Natural Product Research , 9(10), 4996 – 5003. https://doi.org/10.26538/tjnpr/v9i10.40

References

1.Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2(2):141–149.

2.Cilloni D, Saglio G. Molecular pathways: Bcr-abl. Clin Cancer Res. 2012;18(4):930–937. Doi: 10.1158/1078-0432.CCR-11-1417

3.Quintás-Cardama A, Kantarjian HM, Cortes JE. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control. 2009;16(2):122–131.

4.Sicuranza A, Fava C, Tiribelli M, Foti R. Editorial: Advances in the treatment of chronic myeloid leukemia. Front Oncol. 2023;13:1166588. Doi: 10.3389/fonc.2023.1166588

5.Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K, Herrmann R, Lynch KP, Hughes TP. High frequency of point mutations clustered within the adenosine triphosphate–binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood. 2002;99(9):3472–3475.

6.Tanaka R, Kimura S. Abl tyrosine kinase inhibitors for overriding Bcr–Abl/T315I: from the second to third generation. Expert Rev Anticancer Ther. 2008;8(9):1387–1398.

7.Kantarjian H, Baccarani M, Cortes JE. Management of chronic myeloid leukemia in 2025. Cancer Drug Resist. 2025;2(2):141–149. Doi: 10.100x/cdr.2025.141

8.Saglio G, Kim DW, Issaragrisil S, Le Coutre P, Etienne G, Lobo C, Pasquini R, Clark RE, Hochhaus A, Hughes TP, Gallagher N. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362(24):2251–2259.

9.Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305(5682):399–401.

10.O’Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, Cowan-Jacob SW, Lee FY, Heinrich MC, Deininger MW, Druker BJ. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;65(11):4500–4505.

11.Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, Shaito A, Ghaddar T, Kobeissy F, Eid AH. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother. 2022;146:112442. Doi: 10.1016/j.biopha.2021.112442

12.Chen R, Qi QL, Wang MT, Li QY. Therapeutic potential of naringin: an overview. Pharm Biol. 2016;54(12):3203–3210.

13.Shilpa VS, Shams R, Dash KK, Pandey VK, Dar AH, Ayaz Mukarram S, Harsányi E, Kovács B. Phytochemical properties, extraction, and pharmacological benefits of naringin: a review. Molecules. 2023;28(15):5623. Doi: 10.3390/molecules28155623

14.Lim W, Park S, Bazer FW, Song G. Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J Cell Biochem. 2017;118(5):1118–1131. Doi: 10.1002/jcb.25783

15.Motallebi M, Bhia M, Rajani HF, Bhia I, Tabarraei H, Mohammadkhani N, Pereira-Silva M, Kasaii MS, Nouri-Majd S, Mueller AL, Veiga FJ. Naringenin: a potential flavonoid phytochemical for cancer therapy. Life Sci. 2022;305:120752. Doi: 10.1016/j.lfs.2022.120752

16.Memariani Z, Abbas SQ, Ul Hassan SS, Ahmadi A, Chabra A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol Res. 2021;171:105264. Doi: 10.1016/j.phrs.2021.105264

17.Gudimetla K, Orsu P. Evaluation of the combined effect of naringin and imatinib in Philadelphia positive chronic myeloid leukemia: an in vitro and in silico study. Int J Health Sci. 2023;11(3):7948–7962.

18.Gudimetla K. An in-silico and in-vitro study of imatinib and naringin combination for inhibiting P-glycoprotein and delaying drug resistance in chronic myeloid leukemia. Asian J Pharm. 2023;17(2):XX–XX. [Add exact pages if available]

19.Gudimetla K. Evaluation of production of reactive oxygen species in chronic myeloid leukaemia - a combination treatment of imatinib and naringin. Eur Chem Bull. 2023;12:3211–3225.

20.Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, Cervantes F, Clark RE, Cortes JE, Guilhot F, Hjorth-Hansen H. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–884. Doi: 10.1182/blood-2013-05-501569

21.Gonzalez MA, Olivas IM, Bencomo-Alvarez AE, Rubio AJ, Barreto-Vargas C, Lopez JL, Dang SK, Solecki JP, McCall E, Astudillo G, Velazquez VV. Loss of G0/G1 switch gene 2 (G0S2) promotes disease progression and drug resistance in chronic myeloid leukaemia (CML) by disrupting glycerophospholipid metabolism. Clin Transl Med. 2022;12(12):e1146. Doi: 10.1002/ctm2.1146

22.Wang LJ, Liou LR, Shi YJ, Chiou JT, Lee YC, Huang CH, Huang PW, Chang LS. Albendazole-induced SIRT3 upregulation protects human leukemia K562 cells from the cytotoxicity of MCL1 suppression. Int J Mol Sci. 2020;21(11):3907. Doi: 10.3390/ijms21113907

23.Ma L, Shan Y, Bai R, Xue L, Eide CA, Ou J, Zhu LJ, Hutchinson L, Cerny J, Khoury HJ, Sheng Z. A therapeutically targetable mechanism of BCR-ABL-independent imatinib resistance in chronic myeloid leukemia. Sci Transl Med. 2014;6(252):252ra121. Doi: 10.1126/scitranslmed.3008742

24.Wang XY, Sun GB, Wang YJ, Yan F. Emodin inhibits resistance to imatinib by downregulation of Bcr-Abl and STAT5 and allosteric inhibition in chronic myeloid leukemia cells. Biol Pharm Bull. 2020;43(10):1526–1533. Doi: 10.1248/bpb.b20-00312

25.Chandrasekhar C, Kumar PS, Sarma PV. Novel mutations in the kinase domain of BCR-ABL gene causing imatinib resistance in chronic myeloid leukemia patients. Sci Rep. 2019;9(1):2412. Doi: 10.1038/s41598-019-38773-4

Biorghi L, Galimberti S, Baratè C, Bonifacio M, Capochiani E, Cuneo A, Falzetti F, Iurlo A, Lunghi F, Minotto C, Orlandi EM. Chronic myeloid leukemia patient’s voice about the experience of treatment-free remission failure: results from the Italian sub-study of ENESTPath exploring the emotional experience of patients during different phases of a clinical trial. Front Psychol. 2019;10:329. Doi: 10.3389/fpsyg.2019.00329

26.Leary M, Heerboth S, Lapinska K, Sarkar S. Sensitization of drug resistant cancer cells: a matter of combination therapy. Cancers (Basel). 2018;10(12):483. Doi: 10.3390/cancers10120483

27.Tyers M, Wright GD. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol. 2019;17(3):141–155. Doi: 10.1038/s41579-018-0141-9

28.Sak K, Everaus H. Chemomodulating effects of flavonoids in human leukemia cells. Anticancer Agents Med Chem. 2015;15(9):1112–1126.

29.Almeida TP, Ferreira J, Vettorazzi A, Azqueta A, Rocha E, Ramos AA. Cytotoxic activity of fucoxanthin, alone and in combination with the cancer drugs imatinib and doxorubicin, in CML cell lines. Environ Toxicol Pharmacol. 2018;59:24–33.

30.El-Sisi AE, Sokkar SS, Ibrahim HA, Hamed MF, Abu-Risha SE. Targeting MDR-1 gene expression, BAX/BCL2, caspase-3, and Ki-67 by nanoencapsulated imatinib and hesperidin to enhance anticancer activity and ameliorate cardiotoxicity. Fundam Clin Pharmacol. 2020;34(4):458–475. Doi: 10.1111/fcp.12586

31.Głowacki S, Synowiec E, Szwed M, Toma M, Skorski T, Śliwiński T. Relationship between oxidative stress and imatinib resistance in model chronic myeloid leukemia cells. Biomolecules. 2021;11(4):610. Doi: 10.3390/biom11040610

32.Bailly C. Molecular and cellular basis of the anticancer activity of the prenylated flavonoid icaritin in hepatocellular carcinoma. Chem Biol Interact. 2020;325:109124. Doi: 10.1016/j.cbi.2020.109124

33.Farhan M, Rizvi A, Aatif M, Ahmad A. Current understanding of flavonoids in cancer therapy and prevention. Metabolites. 2023;13(4):481. Doi: 10.3390/metabo13040481

34.Chen T, Wang C, Liu Q, Meng Q, Sun H, Huo X, Sun P, Peng J, Liu Z, Yang X, Liu K. Dasatinib reverses the multidrug resistance of breast cancer MCF-7 cells to doxorubicin by downregulating P-gp expression via inhibiting the activation of ERK signaling pathway. Cancer Biol Ther. 2015;16(1):106–114.

35.Jiang L, Wang P, Sun YJ, Wu YJ. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J Exp Clin Cancer Res. 2019;38(1):1–8. Doi: 10.1186/s13046-019-1209-9

36.Cruz-Rodriguez N, Zinzani PL, Kantarjian HM. Novel treatment strategies for chronic myeloid leukemia. Onco Targets Ther. 2025;15:103–116. Doi: 10.2147/OTT.S326789

37.Rahmani AH, Babiker AY, Anwar S. Hesperidin, a bioflavonoid in cancer therapy: a review for a mechanism of action through the modulation of cell signaling pathways. Molecules. 2023;28(13):5152. Doi: 10.3390/molecules28135152

38.Sravani M, Duganath N, Gade DR, Reddy CH. Insilico analysis and docking of imatinib derivatives targeting BCR-ABL oncoprotein for chronic myeloid leukemia. Asian J Res Chem. 2012;5(1):153–158.

Singh VK, Coumar MS. Chronic myeloid leukemia: existing therapeutic options and strategies to overcome drug resistance. Mini Rev Med Chem. 2019;19(4):333–345.