Bioactive Root Extracts of Cannabis sativa Cultivars: Antioxidant and Anti-AChE Properties
Main Article Content
Abstract
Cannabis sativa roots represent a historically significant yet scientifically understudied plant part, despite their traditional medicinal use and potential as a source of bioactive compounds. This study investigates the antioxidant and acetylcholinesterase (AChE) inhibitory activities of root extracts from three C. sativa cultivars— ‘Early Remedy’ (ER) is a high-CBD, low-THC medical cultivar. ‘Siskiyou Gold’ (SG) contains high levels of CBD and has a herbal, woody aroma, making it ideal for extraction, whereas ‘Kroeng Krawia’ (KK) is a tall, slender Thai landrace valued for research and economic potential. Sequential extraction was performed using solvents of increasing polarity (n-hexane, ethyl acetate, and methanol). Total phenolic content (TPC), total flavonoid content (TFC), and chemical profiles were assessed using standard assays and GC–MS analysis, with Trolox and galantamine serving as positive controls. The methanolic extract of KK-M showed the highest TPC (65.43 ± 0.73 mg GAE/g) and antioxidant activity (IC₅₀ = 200.46 ± 6.87 µg/mL), while SG-M exhibited the strongest AChE inhibition (IC₅₀ = 0.010 ± 0.002 mg/mL). GC–MS profiling of KK-M and KK-H revealed a rich array of sterols, triterpenoids, and fatty acid esters. These findings underscore the influence of solvent polarity and cultivar on extract composition and bioactivity. Importantly, they highlight the untapped therapeutic potential of C. sativa roots and the need to conserve phytochemical and genetic diversity for sustainable bioprospecting.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Farag MA, Kayser O. Cannabis sativa root: a neglected source of therapeutically relevant compounds. Planta Med. 2017; 83(12/13): 968 –975. doi:10.1055/s-0043-111932.
Hourfane S, Mechqoq H, Bekkali AY, Rocha JM, Aouad El N. A comprehensive review on Cannabis sativa ethnobotany, phytochemistry, molecular docking and biological activities. Plants. 2023; 12(6): 1245. doi:10.3390/plants12061245.
Gülck T, Booth JK, Carvalho Â, Møller BL. Cannabis taxonomy, diversity, and chemotype classification. Trends Plant Sci. 2020; 25(10): 963–973. doi:10.1016/j.tplants.2020.05.003.
Gagné V, Dupont MÈ, Tremblay M, Fortin M. Comparative neuroprotective effects of Humulus lupulus and Cannabis sativa extracts. Front Pharmacol. 2024; 15: 1465136. doi:10.3389/fphar.2024.1465136.
Gagné V, Merindol N, Boucher R, Boucher N, Desgagné-Penix I. Rooted in therapeutics: comprehensive analyses of Cannabis sativa root extracts reveals potent antioxidant, anti-inflammatory, and bactericidal properties. Front Pharmacol. 2024;15:1465136. doi:10.3389/fphar.2024.1465136.
Gülck T, Møller BL. Phytocannabinoids: origins and biosynthesis. Trends Plant Sci. 2020; 25(10): 985 –1004. doi:10.1016/j.tplants.2020.05.005.
Choudhury S, Ahmed MM, Uddin MG. Current approaches in phytochemical analysis and future trends. Biochem Biophys Rep. 2022; 30: 101291. doi:10.1016/j.bbrep.2022.101291.
Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants. 2023; 12(2): 517. doi:10.3390/antiox 12020517.
Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology. 2021; 190: 108352. doi:10.1016/j.neuropharm.2020.108352.
Kaczorová D, Karalija E, Dahija S, Bešta-Gajević R, Parić A, Ćavar Zeljković S. Influence of extraction solvent on the phenolic profile and bioactivity of two Achillea species. Molecules. 2021; 26(6): 1601. doi:10.3390/molecules26061601.
Lee JE, Jayakody JTM, Kim JI, Jeong JW, Choi KM, Kim TS, et al. The influence of solvent choice on the extraction of bioactive compounds from Asteraceae: A comparative review. Foods. 2024; 13(19): 3151. doi:10.3390/foods13193151.
Choudhury FK, Pandey P, Meitei R, Cardona D, Gujar AC, Shulaev V. GC-MS/MS profiling of plant metabolites. Methods Mol Biol. 2022; 2396: 101–115. doi:10.1007/978-1-0716-1822-6_9.
Dagar R, Gautam A, Priscilla K, Sharma V, Gupta P, Kumar R. Sample preparation from plant tissue for gas chromatography-mass spectrometry (GC-MS). Methods Mol Biol. 2024; 2788: 19 –37. doi:10.1007/978-1-0716-3782-1_2.
Sparkman OD, Penton Z, Kitson FG. Gas chromatography and mass spectrometry: a practical guide. (2nd ed.). San Diego; 2011. 24-35 p.
Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM. Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng. 2019; 117(4): 426–436. doi:10.1016/j.jfoodeng.2013.01.014
Almeida Neto J, Amando Nery D, Simoni Bezerra Lima K, Gomes da Cruz Silva ME, de Lima Araújo TC, Carvalho de Souza NA, Vicente Nishimura RH, de Souza Araújo C, de Oliveira AP, Guedes da Silva Almeida JR, Rolim LA. Phytochemical characterization of Cannabis sativa L. roots from Northeastern Brazil. Chem Biodivers. 2023; 20(3): e202201039. doi:10.1002/cbdv.202201039.
Mofokeng MM, Mosoarca C, Mudau FN. Evaluation of total phenolic content and antioxidant activity of plant extracts using the Folin–Ciocalteu assay. Plants. 2023; 12(2): 251. doi:10.3390/plants12020251.
Ma Y, Liu Y, Wang X, Yin S, Wang Y. Total phenolic content, antioxidant and antimicrobial activities of Cannabis sativa L. root extracts. J Appl Res Med Aromat Plants. 2021; 22: 100304. doi:10.1016/j.jarmap.2021.100304.
Chokchaisiri S, Sripan P, Yongram C, Wongsonthom S, Chimpalee P, Thomprasert P, Chaiphongpachara T. Chemical composition and antioxidant activity of the Kae Lom Kae Sen Thai herbal medicinal formula. Trop J Nat Prod Res. 2025; 9(6): 2632–2644. doi:10.26538/tjnpr/ v9i6.39.
Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7(2): 88–95. doi:10.1016/0006-2952(61)90145-9.
Aly SH, Elbadry AMM, Doghish AS, El-Nashar HAS. Unveiling the pharmacological potential of plant triterpenoids in breast cancer management: an updated review. Naunyn Schmiedebergs Arch Pharmacol. 2024; 397(8): 5571–5586. doi:10.1007/s00210-024-03054-2.
Zio S, Tarnagda B, Tapsoba F, Zongo C, Savadogo A. Health interest of cholesterol and phytosterols and their contribution to one health approach: review. Heliyon. 2024; 10(21): e40132. doi:10.1016/j.heliyon.2024.e40132.
Shaaban MT, Ghaly MF, Fahmi SM. Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J Basic Microbiol. 2021; 61(6): 557–568. doi:10.1002/jobm.202100061.
Ferrini F, Donati Zeppa S, Fraternale D, Carrabs V, Annibalini G, Verardo G, Gorassini A, Albertini MC, Ismail T, Fimognari C, Sestili P. Characterization of the biological activity of the ethanolic extract from the roots of Cannabis sativa L. grown in aeroponics. Antioxidants. 2022; 11(5): 860. doi:10.3390/antiox11050860.
Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010; 15(10): 7313 –7352. doi:10.3390/molecules15107313.
Platzer M, Kiese S, Tybussek T, Herfellner T, Schneider F, Schweiggert-Weisz U, Eisner P. Radical scavenging mechanisms of phenolic compounds: a quantitative structure-property relationship (QSPR) study. Front Nutr. 2022; 9: 882458. doi:10.3389/fnut.2022.882458.
Jaśkiewicz K, Szczęsna T, Jachuła J. How phenolic compounds profile and antioxidant activity depend on botanical origin of honey: a case of Polish varietal honeys. Molecules. 2025; 30(2): 360. doi:10.3390/molecules30020360.
Orhan I, Sener B, Choudhary MI, Khalid A. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J Ethnopharmacol. 2004; 91(1): 57–60. doi:10.1016/j.jep.2003.11.016.
Qamar MTU, Alqahtani SM, Alamri MA, Chen LL. Structural insights into natural compounds as potential acetylcholinesterase inhibitors: a molecular modeling approach. J Mol Liq. 2022; 356: 119045. doi:10.1016/j.molliq.2022.119045.
National Institute of Standards and Technology (NIST). NIST/EPA/NIH Mass Spectral Library (NIST 17), version 2.0. Gaithersburg (MD): NIST; 2017.
Ferrini F, Rossi S, Pellegrini E, Giannini R. Anticholinesterase and antioxidant activities of Cannabis sativa extracts from different plant parts. Antioxidants. 2022; 11(5): 860. doi:10.3390/antiox11050860.


