In silico Study of the Inhibitory Effects of Sanguinarine and its Proposed Derivative on Phosphoinositide 3-kinase (PI3K) Isoforms

Authors

  • Niran A. Al-Ogaili Department of Pharmacognosy, College of Pharmacy, Al-Farabi University, Baghdad, 1011, Iraq
  • Noor M. Mohammed Department of Pharmaceutical Chemistry, College of Pharmacy, Al-Farabi University, Baghdad, 1011, Iraq

DOI:

https://doi.org/10.26538/tjnpr/v9i10.29

Keywords:

Sanguinarine, Sanguinarine Derivative, Pan phosphatidylinositol 3-kinase inhibitors, Pan phosphatidylinositol 3-kinase isoform, Docking, Breast Cancer

Abstract

Breast cancer (BC) remains the most commonly diagnosed cancer in women worldwide, with its incidence continuing to rise and often experiences resistance to anticancer drugs. Sanguinarine, a prominent benzophenanthridine alkaloid found in many plants, has garnered attention for its multifaceted antitumor activities, through different mechanisms.  This study aims to explore the potential inhibitory effect of Sanguinarine alkaloid (SG) and its proposed structurally modified derivative (SGD), using in silico methods, against the PI3K catalytic subunits (p110α, p110β, p110γ, p110δ). Molecular docking was performed to assess the binding affinities of the studied drugs with various PI3K isoforms, while their drug-likeness and pharmacokinetic (ADMET) properties were predicted using in silico approaches. All analyses were performed in silico, and no laboratory synthesis or biological assays were conducted. Preliminary in silico analyses indicated non-significant interactions between the Sanguinarine alkaloid and all PI3K isoforms, accompanied by unfavorable pharmacokinetic and toxicity predictions in comparison with the reference drug, Alpelisib. However, the derived compound exhibited a pan PI3K inhibitory activity with highly significant (p < 0.05) binding affinities with all PI3K isoforms (p110α, p110β, p110γ, p110δ) and possessed an acceptable pharmacokinetic and toxicity profile compared to the parent alkaloid. These findings concluded that the proposed derivative (SGD) could be a potential candidate for the development of a novel antibreast cancer drug, obtained by targeting PI3K catalytic subunits. Our future objectives include synthesizing the new molecule, characterizing it by NMR, MS, and IR, and conducting in vitro and in vivo investigations

References

1. Giaquinto AN, Sung H, Newman LA, Freedman RA, Smith RA, Star J, Jemal A, Siegel RL. Breast cancer statistics 2024. CA Cancer J Clin. 2024;74(6):477–495. doi:10.3322/caac.21863.

2. Turner NC, Im S-A, Saura C, Juric D, Loibl S, Kalinsky K, Schmid P, Loi S, Sunpaweravong P, Musolino A, Li H, Zhang Q, Nowecki Z, Leung R, Thanopoulou E, Shankar N, Lei G, Stout TJ, Hutchinson KE, Schutzman JL. Inavolisib-based therapy in PIK3CA-mutated advanced breast cancer. N Engl J Med. 2024;391(17):1584–1596. doi:10.1056/ NEJMoa2404625.

3. U.S. Food and Drug Administration. FDA approves inavolisib with palbociclib and fulvestrant for endocrine-resistant, PIK3CA-mutated, HR-positive, HER2-negative, advanced breast cancer [Internet]. Silver Spring (MD): U.S. Food and Drug Administration; 2024 Oct 10 [cited 2025 Sep 23]. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-inavolisib-palbociclib-and-fulvestrant-endocrine-resistant-pik3ca-mutated-hr-positive.

4. Rodón J, Demanse D, Rugo HS, André F, Janku F, Mayer I, Burris H, Simo R, Farooki A, Hu H, Lorenzo I, Quadt C, Juric D. A risk analysis of alpelisib-induced hyperglycemia in patients with advanced solid tumors and breast cancer. Breast Cancer Res. 2024;26:118. doi:10.1186/s13058-024-01773-1.

5. Bergholz JS, Wang Q, Wang Q, Ramseier M, Prakadan S, Wang W, Fang R, Kabraji S, Zhou Q, Gray GK, Abell-Hart K, Xie S, Guo X, Gu H, Von T, Jiang T, Tang S, Freeman GJ, Kim HJ, Shalek AK, Roberts TM, Zhao JJ. PI3Kβ controls immune evasion in PTEN-deficient breast tumours. Nature. 2023;617(7959):139-146. doi: 10.1038/s41586-023-05940-w.

6. Peng X, Huang X, Lulu TB, Jia W, Zhang S, Cohen L, Huang S, Fan J, Chen X, Liu S, Wang Y, Wang K, Isoyama S, Dan S, Wang F, Zhang Z, Elkabets M, Kong D. A novel pan‑PI3K inhibitor KTC1101 synergizes with anti‑PD‑1 therapy by targeting tumor suppression and immune activation. Mol. Cancer.2024;23:54. https://doi.org/10.1186/s12943-024-01978-0

7. Huang LJ, Lan JX, Wang JH, Huang H, Lu K, Zhou ZN, Xin SY, Zhang ZY, Wang JY, Dai P, Chen XM, Hou W. Bioactivity and mechanism of action of sanguinarine and its derivatives in the past 10 years. Biomed Pharmacother. 2024;173:116406. doi: 10.1016/j.biopha.2024.116406. Epub 2024 Mar 8. PMID: 38460366.

8. Messeha SS, Zarmouh NO, Mendonça P, Alwakwak AA, Soliman KFA. Involvement of AKT/PI3K pathway in sanguinarine’s antiproliferative effects in breast cancer cells. CGP. 2023;20(4):323–342. doi:10.21873/cgp.20385.

9. Dulsat J, López-Nieto B, Estrada-Tejedor R, Borrell JI. Evaluation of free online ADMET tools for academic or small biotech environments. Molecules. 2023;28(2):776. doi:10.3390/molecules28020776.

10. Fu L, Shi S, Yi J, Wang N, He Y, Wu Z, Peng J, Deng Y, Wang W, Wu C, Lyu A, Zeng X, Zhao W, Hou T, Cao D. ADMET lab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024;52(W1):W422-W431. doi: 10.1093/nar/gkae236.

11. Hao C, Wei Y, Meng W, Zhang J, Yang X. PI3K/AKT/mTOR inhibitors for hormone receptor-positive advanced breast cancer. Cancer Treat Rev. 2025;132:102861. doi:10.1016/j.ctrv.2024.102861.

12. Kartika IR, Syach AA, Larasati D, Pitaloka SA, Octaviany SN, Kurniadewi F, Dianhar H, Saputra I, Nurjayadi M, Syaadah RS, Namirah I. In-Silico Molecular Docking and ADMET Prediction of Natural Compounds In Oncom. Trop JNat Prod Res. 2025; 9(5):2167 -2176. https://doi.org/10.26538/tjnpr/v9i5.42

13. Salih SJ. Synthesis of New Ester Derivatives of Metronidazole as Possible Prodrugs. [Online]. 2007. [ Cited 2025 July 1]. Available from: https://www.academia.edu/5040672.

14. Ramos RS, Borges RS, de Souza JSN, Araujo IF, Chaves MH, Santos CBR. Identification of potential antiviral inhibitors from hydroxychloroquine and 1, 2, 4, 5-tetraoxanes analogues and investigation of the mechanism of action in SARS-CoV-2. J. Drug Deliv. Ther. 2019; 9: 366–369. https://doi.org/10.3390/ijms23031781

15. Vijayalakshmi M, Dhanapradeeba V, Kunjiappan S, Sundar K, Pandian SRK. Targeting TLRs with the Derivatives of Mimosa Pudica: An In Silico Approach. Biointerface Res. Appl. Chem. 2023;13(3): 237. https://doi.org/10.33263/BRIAC133.237

16. Nimgampalle M, Devanathan V, Saxena A. Importance of in silico studies on the design of novel drugs from medicinal plants against 21st-century pandemics: past, present, and future. In: Pandemic Outbreaks in the 21st Century. 2021:211–223. http://dx.doi.org/10.1016/B978-0-323-85662-1.00013-6

17. Roney M, Fasihi MF, Aluwi M. The importance of in-silico studies in drug discovery. Intelligent Pharmacy.2024; 2(4):578-579. http://dx.doi.org/10.1016/j.ipha.2024.01.010

18. Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, Rosebrock D, Mitchell TJ, Rubanova Y, Anur P, Yu K, Tarabichi M, Deshwar A, Wintersinger J, Kleinheinz K, Vázquez-García I, Haase K, Jerman L, Sengupta S, Macintyre G, Malikic S, Donmez N, Livitz DG, Cmero M, Demeulemeester J, Schumacher S, Fan Y, Yao X, Lee J, Schlesner M, Boutros PC, Bowtell DD, Zhu H, Getz G, Imielinski M, Beroukhim R, Sahinalp SC, Ji Y, Peifer M, Markowetz F, Mustonen V, Yuan K, Wang W, Morris QD. The evolutionary history of 2,658 cancers. Nature. 2020;578(7793):122-128. doi: 10.1038/s41586-019-1907-7.

19. Vespalec R, Barták P, Šimánek V, Vlčková M. Electrophoretic investigation of interactions of sanguinarine and chelerythrine with molecules containing mercapto group. J. Chromatogr. B. 2003; 797(1–2): 357-366. https://doi.org/10.1016/s1570-0232(03)00308-8

20. Bonifácio VDB, Pereira SA, Serpa J, Vicente JB. Cysteine metabolic circuitries: druggable targets in cancer. Br J Cancer. 2021;124(5):862-879. doi: 10.1038/s41416-020-01156-1.

21. Avashthi H, Srivastava A, Singh DB. Cavity/Binding Site Prediction Approaches and Their Applications. In: Singh, D.B. (Eds.). Computer-Aided Drug Design. Singapore: Springer; 2020. 49-69 p. https://doi.org/10.1007/978-981-15-6815-2_3

22. Maulydia NB, Tallei TE, Ginting B, Idroes R, Nillian D, Faradilla M. Analysis of flavonoid compounds of Orange (Citrus sp.) peel as anti-main protease of SARS-CoV-2: A molecular docking study. ICAGRI. 2021. IOP Conf. Series: Earth and Environmental Science 951 (2022) 012078. doi:10.1088/1755-1315/951/1/012078

23. Yu AC, Lian H, Kong X, Lopez Hernandez H, Qin J, Appel EA. Physical networks from entropy-driven non-covalent interactions. Nat. Commun.2021;12(746). https://doi.org/10.1038/s41467-021-21024-7

24. Danislav S. Spassov. Binding Affinity Determination in Drug Design: Insights from Lock and Key, Induced Fit, Conformational Selection, and Inhibitor Trapping Models. Int. J. Mol. Sci. 2024; 25(13):7124. https://doi.org/10.3390/ijms25137124

25. Furet P , Guagnano V , Fairhurst RA , Imbach-Weese P , Bruce I , Knapp M , Fritsch C , Blasco F , Blanz J , Aichholz R , Hamon J , Fabbro D , Caravatti G. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg Med Chem Lett.2013;23:3741–3748. https://doi.org/10.1016/j.bmcl.2013.05.007

26. Sun P, Zhang X, Wang RJ, Ma QY, Xu L, Wang Y, Liao HP, Wang HL, Hu LD, Kong X, Ding J, Meng LH. PI3Kalpha inhibitor CYH33 triggers antitumor immunity in murine breast cancer by activating CD8(+)T cells and promoting fatty acid metabolism. J Immunother Cancer. 2021;9: e003093. https://doi.org/10.1136/jitc-2021-003093

27. Bergholz JS, Wang Q, Wang Q, Ramseier M, Prakadan S, Wang W, Fang R, Kabraji S, Zhou Q, Gray GK, Abell-Hart K, Xie S, Guo X, Gu H, Von T, Jiang T, Tang S, Freeman GJ, Kim HJ, Shalek AK, Roberts TM, Zhao JJ. PI3Kβ controls immune evasion in PTEN-deficient breast tumours. Nature.2023;617(7959):139-146. doi: 10.1038/s41586-023-05940-w.

28. Collins NB, Al Abosy R, Miller BC, Bi K, Zhao Q, Quigley M, Ishizuka JJ, Yates KB, Pope HW, Manguso RT, Shrestha Y, Wadsworth M, Hughes T, Shalek AK, Boehm JS, Hahn WC, Doench JG, Haining WN. PI3K activation allows immune evasion by promoting an inhibitory myeloid tumor microenvironment. J Immunother Cancer. 2022;10: e003402. https://doi.org/10.1136/jitc-2021-003402

29. Weigelt B, Warne PH, Lambros MB, Reis-Filho JS, Downward J. PI3K pathway dependencies in endometrioid endometrial cancer cell lines. Clin Cancer Res. 2013;19:3533–3544. https://doi.org/10.1158/1078-0432.ccr-12-3815

30. Zhou H, Yu C, Kong L, Xu X, Yan J, Li Y, An T, Gong L, Gong Y, Zhu H, Zhang H, Yang X, Li Y. B591, a novel specific pan-PI3K inhibitor, preferentially targets cancer stem cells. Oncogene.2019;38:3371–3386. https://www.nature.com/articles/s41388-018-0674-5

31. Castel P, Toska E, Engelman JA, Scaltriti M. The present and future of PI3K inhibitors for cancer therapy. Nat Cancer. 2021;2:587–597. https://doi.org/10.1038/s43018-021-00218-4

32. Stanland LJ, Ang HX, Hoj JP, Chu Y, Tan P, Wood KC, Luftig MA. CBF-beta mitigates PI3K-alpha-specific inhibitor killing through PIM1 in PIK3CA mutant gastric cancer. Mol Cancer Res. 2023;21(11):1148–1162. doi: 10.1158/1541-7786.MCR-23-0034

33. Hopkins BD, Pauli C, Du X, Wang DG, Li X, Wu D, Amadiume SC, Goncalves MD, Hodakoski C, Lundquist MR, Bareja R, Ma Y, Harris EM, Sboner A, Beltran H, Rubin MA, Mukherjee S, Cantley LC. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature. 2020; 560: 499–503. https://doi.org/10.1038/s41586-018-0343-4

34. Hudson K, Hancox UJ, Trigwell C, McEwen R, Polanska UM, Nikolaou M, Gutierrez PM, Avivar-Valderas A, Delpuech O, Dudley P, Hanson L, Ellston R, Jones A, Cumberbatch M, Cosulich SC, Ward L, Cruzalegui F, Green S. Intermittent High-

35. Dose Scheduling of AZD8835, a Novel Selective Inhibitor of PI3Kalpha and PI3Kdelta, Demonstrates Treatment Strategies for PIK3CA-Dependent Breast Cancers. Mol Cancer Ther.2016;15:877–889. https://doi.org/10.1158/1535-7163.mct-15-0687

36. Glaeske S, Huebner F, Anurin A, Janzer A, Zitzmann-Kolbe S, Juliane P, Glaeske K, Berndt S, Mumberg D, Gorjanacz M, Ziegelbauer K, Kreft B, Liu N. Pulsatile inhibition of PI3K converts immune suppression by Tregs and M2-TAM to anti-tumor immune response in animal models insensitive or resistant to the monotherapies of PI3K and checkpoint inhibitors. Cancer Res.2018;78:LB-123-LB-123. https://doi.org/10.1007/s10238-023-01227-6

37. Massacesi C, Di Tomaso E, Urban P, Hirawa St. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. Onco Targets Ther.2016;9:203-210. https://doi.org/10.2147/ ott.s89967

38. Tao JJ, Castel P, Radosevic-Robin N, Elkabets M, Auricchio N, Aceto N, Weitsman G, Barber P, Vojnovic B, Ellis H, Morse N, Viola-Villegas NT, Bosch A, Juric D, Hazra S, Singh S, Kim P, Bergamaschi A, Maheswaran S, Ng T, Penault-Llorca F, Lewis JS, Carey LA, Perou CM, Baselga J, Scaltriti M. Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-Akt pathway in triple-negative breast cancer. Sci. Signal.2014;7(318):29. https://doi.org/10.1126/scisignal.2005125

39. Schmid P, Pinder SE, Wheatley D, Macaskill J, Zammit C, Hu J, Price R, Bundred N, Hadad S, Shia A, Sarker SJ, Lim L, Gazinska P, Woodman N, Korbie D, Trau M, Mainwaring P, Gendreau S, Lackner MR, Derynck M, Wilson TR, Butler H, Earl G , Parker P, Purushotham A, Thompson A. Phase II randomized preoperative window-of-opportunity study of the PI3K inhibitor pictilisib plus anastrozole compared with anastrozole alone in patients with estrogen receptor-positive breast cancer. J Clin Oncol. 2016;34(17):1987–1994. https://doi.org/10.1200/jco.2015.63.919

40. De P, Sun Y, Carlson JH, Friedman LS, Leyland-Jones BR, Dey N. Doubling down on the PI3K-AKT-mTOR pathway enhances the antitumor efficacy of PARP inhibitor in triple negative breast cancer model beyond BRCA-ness. Neoplasia.2014;16(1):43–72. https://doi.org/10.1593/neo.131694

41. Sai J, Owens P, Novitskiy SV, Hawkins OE, Vilgelm AE, Yang J, Sobolik T, Lavender N, Johnson AC, McClain C, Ayers GD, Kelley MC, Sanders M, Mayer IA, Moses HL, Boothby M, Richmond A. PI3K inhibition reduces mammary tumor growth and facilitates antitumor immunity and anti-PD1 responses. Clin Cancer Res.2017;23(13):3371–3384. https://doi.org /10.1158/1078 -0432. ccr-16-2142

42. Jasim SF, Mustafa YF. Synthesis, ADME Study, and antimicrobial evaluation of novel naphthalene-based derivatives. J. Med. Chem. Sci.2022;5(5):793–807. https://doi.org/10.26655 /JMCHEMSCI.2022.5.14

43. Younes AH, Mustafa YF. Unveiling the biomedical applications of novel coumarins isolated from Capsicum annuum L. Seeds by a multivariate extraction technique, Chem. Biodivers.2024;21:6. https://doi.org/10.1002/cbdv.202400581

44. Jagannathan R. Characterization of drug-like chemical space for cytotoxic marine metabolites using multivariate methods. ACS Omega.2019;4(3):5402–5411. https://doi.org/10.1021/acsomeg a.8b01764

45. Pollastri MP. Overview on the rule of five. Curr. Protocol. Pharmacol.2010;49(1). https://doi.org/10.1002/0471141755.ph0 912s49

46. Ibrahim ZY, Uzairu A, Shallangwa GA, Abechi SE. Pharmacokinetic predictions and docking studies of substituted aryl amine-based triazolopyrimidine designed inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), Future J. Pharmaceut. Sci.2021;7(1):133. http://dx.doi.org/10.1186/s43094-021-00288-2

47. Prasanna S, Doerksen R. Topological polar surface area: a useful descriptor in 2D-QSAR, Curr. Med. Chem.2009;16(1):21–41. https://doi.org/10.2174/092986709787002817

48. Miller RR, Madeira M, Wood HB, Geissler WM, Raab CE, Martin IJ. Integrating the impact of lipophilicity on potency and pharmacokinetic parameters enables the use of diverse chemical space during small molecule drug optimization, J. Med. Chem.2020;63 (21):12156–12170. https://doi.org/10.1021/acs.jmedchem.9b01813

49. Paul D. Leeson PD, Bento AP, Gaulton A, Hersey A, Manners EJ, Radoux CJ, Leach AR. Target-Based Evaluation of “Drug-Like” Properties and Ligand Efficiencies. J. Med. Chem. 2021; 64(11): 7210–7230. https://doi.org/10.1021/acs.jmedchem.1c00416

50. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 2017; (7):1–13. https://doi.org/10.1038/srep42717

Downloads

Published

2025-10-30

How to Cite

In silico Study of the Inhibitory Effects of Sanguinarine and its Proposed Derivative on Phosphoinositide 3-kinase (PI3K) Isoforms. (2025). Tropical Journal of Natural Product Research , 9(10), 4899 – 4908. https://doi.org/10.26538/tjnpr/v9i10.29