Ethyl acetate Fraction of Nypa fruticans Wurmb Leaves Enhances Antihyperglycemic Activity, Insulin Secretion, Pancreatic β-cell Mass, and GLUT2 Expression

Main Article Content

Danang Raharjo
Haryoto
Tanti A. Sujono

Abstract

Diabetes mellitus is a metabolic condition characterized by persistent hyperglycemia resulting from defective insulin production, resistance, or a combination of both. The objective of this study was to assess the antihyperglycemic impact of the ethyl acetate fraction (AEF) of Nypa fruticans Wurmb fronds in streptozotocin-induced diabetic rats. Male Wistar rats were administered AEF at dosages of 125, 250, or 500 mg/kg body weight, or glibenclamide at 0.45 mg/kg, for a duration of 21 days. Blood glucose and serum insulin levels were evaluated at intervals, and pancreatic tissues were examined for insulitis score, β-cell count, and GLUT2 expression using immunohistochemistry. Compared to diabetic controls, AEF at 250 and 500 mg/kg dramatically lowered blood glucose and raised insulin levels. Histopathological study demonstrated decreased insulitis and augmented β-cell mass, whilst immunohistochemistry indicated elevated GLUT2 expression in pancreatic islets. These findings indicate that AEF enhances glycemic control by promoting insulin secretion, regenerating β-cells, and increasing GLUT2 expression, hence confirming its potential as a candidate for antidiabetic therapy.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biography

Danang Raharjo, Doctoral Program in Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jalan Achmad Yani No. 157, Pabelan, Kartasura, Surakarta, Central Java 57169, Indonesia

Department of Pharmacy, Faculty of Health Sciences, Duta Bangsa University Surakarta, Jalan Pinang No. 47, Jati, Cemani, Grogol District, Sukoharjo Regency, Central Java 57552, Indonesia

 

How to Cite

Ethyl acetate Fraction of Nypa fruticans Wurmb Leaves Enhances Antihyperglycemic Activity, Insulin Secretion, Pancreatic β-cell Mass, and GLUT2 Expression. (2025). Tropical Journal of Natural Product Research , 9(10), 4889 – 4892. https://doi.org/10.26538/tjnpr/v9i10.27

References

1. International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Brussels: IDF; 2021. doi:10.1016/S2213-8587(21)00243-4

2. Ministry of Health Republic of Indonesia. Riset Kesehatan Dasar (Riskesdas) 2021. Jakarta: Kemenkes RI; 2022. Available from: https://www.litbang.kemkes.go.id/laporan-riset-kesehatan-dasar-riskesdas/

3. Unger RH, Orci L. The essential role of β-cell dysfunction in the pathogenesis of type 2 diabetes mellitus. Diabetes. 2010;59(6):1359–1367. doi:10.2337/db09-1843

4. Matschinsky FM. Assessing the potential of glucokinase activators in diabetes therapy. Nat Rev Drug Discov. 2009;8(5):399–416. doi:10.1038/nrd2831

5. Kim H, Joe Y, Park B. Role of glucose transporter 2 in pancreatic β-cell function. Endocr J. 2011;58(1):1–12. doi:10.1507/endocrj.K10E-260

6. American Diabetes Association. Standards of medical care in diabetes—2022. Diabetes Care. 2022;45(Suppl 1):S1–S264. doi:10.2337/dc22-S001

7. Suhartini S, Lestari P, Nugroho A. Ethnobotanical survey and traditional uses of Nypa fruticans Wurmb in Indonesian coastal communities. J Ethnopharmacol. 2019;231:36–44. doi:10.1016/j.jep.2018.11.031

8. Sulaiman MR, Tengku Ibrahim TS. In vitro inhibitory effects of Nypa fruticans extract on α-glucosidase and α-amylase. Food Chem Toxicol. 2012;50(4):1152–1158. doi:10.1016/j.fct.2012.01.038

9. Yusoff S, Ahmad SH, Kamaruddin NA. Vinegar extract of Nypa fruticans improves insulin secretion and pancreatic histology in diabetic rats. J Ethnopharmacol. 2017;198:35–42. doi:10.1016/j.jep.2016.12.017

10. Ahmad WZ, Sattar MA. Anti-diabetic effect of pale vinegar of Nypa fruticans in streptozotocin-induced diabetic rats. J Appl Pharm Sci. 2018;8(3):100–104. doi:10.7324/JAPS.2018.8314

11. Idris MY, Abdullah M. Effects of Nypa fruticans vinegar on postprandial hyperglycemia in Wistar rats. Planta Med. 2016;82(4):324–329. doi:10.1055/s-0035-1558243

12. Nureni DW, Supriyadi E. Methanol extract of Nypa fruticans stimulates peripheral glucose uptake in diabetic rats. Pharm Biol. 2014;52(8):1065–1071. doi:10.3109/13880209.2013.879586

13. Chan WJ, Lim JY. Ethanol extract of Nypa fruticans fronds lowers glycemic index in type 2 diabetic patients: a pilot study. Phytother Res. 2015;29(5):702–708. doi:10.1002/ptr.5294

14. Kowalska K, Szumilas P. Flavonoid composition of Nypa fruticans and antioxidant activity. Food Chem. 2014;155:230–239. doi:10.1016/j.foodchem.2014.01.051

15. Rahman MA, Choi JS. Phytochemical analysis of Nypa fruticans leaves: identification of quercetin, catechin, and rutin. Fitoterapia. 2013;89:55–62. doi:10.1016/j.fitote.2013.05.004

16. Hoe S, Lim TK. Anthocyanin and apigenin derivatives from Nypa fruticans. Phytochemistry. 2012;78:140–146. doi:10.1016/j.phytochem.2012.03.004

17. Wang Z, Geng C. Catechin ameliorates β-cell dysfunction and promotes regeneration in diabetic rats. Biochem Pharmacol. 2011;82(8):1020–1027. doi:10.1016/j.bcp.2011.06.023

18. Lee SY, Park JB. Gut hormone modulation by catechin: implications for glycemic control. J Nutr Biochem. 2010;21(8):674–680. doi:10.1016/j.jnutbio.2009.04.001

19. Morrison K, Forrester T. Scoring insulitis: histological assessment of pancreatic tissues. Toxicol Pathol. 2009;37(1):19–25. doi:10.1177/0192623308329261

20. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG, James JA, Salto-Tellez M, Hamilton PW. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878. doi:10.1038/s41598-017-17204-5

21. Del Prato S, Marchetti P. β-cell apoptosis in type 2 diabetes. Endocr Pract. 2012;18(5):663–670. doi:10.4158/EP12021.RA

22. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107. doi:10.1038/nri2925

23. Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia. 2015;58(2):221–232. doi:10.1007/s00125-014-3451-1

24. Cahill GF Jr. Fuel metabolism in starvation. Annu Rev Nutr. 2006;26:1–22. doi:10.1146/annurev.nutr.26.061505.111258

25. Eid HM, Haddad PS. The antidiabetic potential of quercetin: underlying mechanisms. Crit Rev Food Sci Nutr. 2017;57(6):1159–1171. doi:10.1080/10408398.2014.993751

26. Kim TH, Park JH. Flavonoid-induced β-cell proliferation and survival: a review. J Agric Food Chem. 2015;63(9):1965–1973. doi:10.1021/jf505651v

27. Yang F, Oz HS. Flavonoids stimulate β-cell neogenesis in vitro: role of neogenesis from ductal cells. Mol Nutr Food Res. 2014;58(3):602–611. doi:10.1002/mnfr.201300381

28. Tontonoz P, Spiegelman BM. PPARγ mediates high-glucose effect on GLUT2 expression: a link between lipids and diabetes. J Biol Chem. 1999;274(52):37433–37439. doi:10.1074/jbc.274.52.37433

29. Zakaria FR, Herlina L, Susilowati A, Darmanto W. Antidiabetic potential of Moringa oleifera Lam. ethyl acetate leaf fraction in alloxan-induced diabetic rats. J Jamu Indones. 2019;4(2):53–60. doi:10.29244/jji.v4i2.20

30. Maharani TP, Kristanti AN, Nugroho LH, Raharjo TJ. Antidiabetic activity of combined extract of Vernonia amygdalina Delile and red onion peel in alloxan-induced diabetic rats. J Jamu Indones. 2021;6(1):9–18. doi:10.29244/jji.v6i1.97

31. Sari W, Andarwulan N, Supratman U, Kusnadi J, Rifai LA. Phytochemical profile and antidiabetic activity of Salacca zalacca (Gaertn.) Voss var. Manonjaya fruit. J Jamu Indones. 2020;5(2):41–49. doi:10.29244/jji.v5i2.47

32. Andriani Y, Nurpratama R, Lestari SD, Yuliarti I, Ramadhani Y. Total phenolic and flavonoid content and antioxidant activity of Orthosiphon aristatus (Blume) Miq. leaves. J Jamu Indones. 2022;7(1):1–8. doi:10.29244/jji.v7i1.235