Green-Synthesized Silver Nanoparticles from Acalypha godseffiana and Their Biofilm-Disruptive Activity against ESKAPE Pathogens

Main Article Content

Safiyya M Shehu
Shamsuddeen Umar
Sandeep Sharma
Sarika Sharma

Abstract

The emergence of multidrug-resistant (MDR) pathogens, including the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli), underscores the urgent need for novel antimicrobial agents. This study reports the green synthesis of silver nanoparticles (AgNPs) using Acalypha godseffiana leaf extract and evaluates their potent antibiofilm activity against these critical pathogens. UV–Vis spectroscopy confirmed nanoparticle formation through a characteristic surface plasmon resonance peak at 437 nm. In comparison, transmission electron microscopy (TEM) revealed spherical nanoparticles ranging from 1 to 20 nm, stabilized by plant-derived phytochemicals. Energy-dispersive X-ray (EDX) analysis verified the presence of elemental silver with a peak at 3.0 keV, accompanied by organic capping agents. The biosynthesized AgNPs demonstrated dose-dependent inhibition of biofilm formation, exhibiting maximal activity against S. aureus (61.71% inhibition at 100 μg/mL) and A. baumannii (52.58%). Minimum biofilm eradication concentrations (MBEC) indicated complete disruption of established biofilms at 200 μg/mL for P. aeruginosa and 400 μg/mL for E. faecium. Mechanistic investigations suggest that the antibiofilm effects are mediated by reactive oxygen species (ROS) generation, degradation of extracellular polymeric substances (EPS), and disruption of bacterial membranes, potentiated by synergistic interactions with flavonoids and phenolic compounds from the plant extract. These findings highlight A. godseffiana-derived AgNPs as a sustainable and eco-friendly alternative to conventional antibiotics, particularly for managing biofilm-associated MDR infections. The study provides critical insights and dosage thresholds essential for future translational applications, including medical device coatings and topical antimicrobial formulations.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Green-Synthesized Silver Nanoparticles from Acalypha godseffiana and Their Biofilm-Disruptive Activity against ESKAPE Pathogens. (2025). Tropical Journal of Natural Product Research , 9(10), 4803 – 4811. https://doi.org/10.26538/tjnpr/v9i10.15

References

1. Patel RR, Kumar R, Bhatt P, Rawal R, Parikh A, Padalia H, Singh S. A novel nanotherapeutic approach: dual action of green-synthesized silver nanoparticles from Clerodendrum serratum against MDR-ESKAPE pathogens with wound healing potential. J Drug Deliv Sci Technol. 2025;108:106907.

2. Khan MH, Unnikrishnan S, Ramalingam K. Antipathogenic efficacy of biogenic silver nanoparticles and antibiofilm activities against multi-drug-resistant ESKAPE pathogens. Appl Biochem Biotechnol. 2024;196(4):2031–2052.

3. Mishra M, Ballal A, Rath D, Rath A. Novel silver nanoparticle-antibiotic combinations as promising antibacterial and anti-biofilm candidates against multiple-antibiotic resistant ESKAPE microorganisms. Colloids Surf B Biointerfaces. 2024;236:113826.

4. Yassin MT, Mostafa AAF, Al-Askar AA, Al-Otibi FO. Synergistic antibacterial activity of green synthesized silver nanomaterials with colistin antibiotic against multidrug-resistant bacterial pathogens. Crystals. 2022;12 (8):1057.

5. Raza S, Wdowiak M, Grotek M, Adamkiewicz W, Nikiforow K, Mentea P, Paczesny J. Enhancing the antimicrobial activity of silver nanoparticles against ESKAPE bacteria and emerging fungal pathogens by using tea extracts. Nanoscale Adv. 2023;5(21):5786–5798.

6. Bhatia P, Sharma A, George AJ, Anvitha D, Kumar P, Dwivedi VP, Chandra NS. Antibacterial activity of medicinal plants against ESKAPE: an update. Heliyon. 2021;7(2):e06310.

7. Ali AY, Alani AAK, Ahmed BO, Hamid LL. Effect of biosynthesized silver nanoparticle size on antibacterial and anti-biofilm activity against pathogenic multi-drug resistant bacteria. OpenNano. 2024;20:100213.

8. Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A critical review of the antimicrobial and antibiofilm activities of green-synthesized plant-based metallic nanoparticles. Nanomaterials. 2022;12(11):1841.

9. Olubodun SO, Eriyamremu GE, Ayevbuomwan ME, Nzoputa CI. In vitro antioxidant activity and phytochemical analyses of Acalypha godseffiana (Euphorbiaceae) leaf extracts. Niger J Nat Prod Med. 2021;25(1):75–79..

10. Oni MO, Akinmoladun FA, Olajuyigbe OO, Ogunwande IA, Olawale FA. Insecticidal and toxicological study of n-hexane leaf extract of Acalypha godseffiana used as a protectant for wheat grains. Eur J Zool Res. 2019;7(1):19–29.

11. Samreen, Roy DN, Ahmad I. Chapter 4 - Combating biofilm of ESKAPE pathogens from ancient plant-based therapy to modern nanotechnological combinations. In: Roy DB, editor. Advances in Cancer Stem Cells. Academic Press; 2022;20:59–94.

12. Hossain, M. R., Biplob, A. I., Sharif, S. R., Bhuiya, A. M., & Sayem, A. S. M. Antibacterial Activity of Green Synthesized Silver Nanoparticles of Lablab purpureus Flowers Extract against Human Pathogenic Bacteria. Trop. J. Nat. Prod. Res. 2023; 7(8): 3647–3651.

13. Swidan NS, Hashem YA, Elkhatib WF, Yassien MA. Antibiofilm activity of green-synthesized silver nanoparticles against biofilm-associated enterococcal urinary pathogens. Sci Rep. 2022;12(1):1–13.

14. Mohanta YK, Biswas K, Jha SK, Hashem A, Abd Allah EF, Mohanta TK. Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the Indian medicinal plants. Front Microbiol. 2020;11(6):1–15.

15. Azimzadeh M, Sabziparvar B, Jafari A, Noorbakhsh F, Kazemzadeh A, Rahbar M. Biofilm inhibition of multidrug-resistant Pseudomonas aeruginosa using green-synthesized silver nanoparticles and colistin. Sci Rep. 2025;15(1):14993.

16. Labulo AH, David OA, Terna AD. Green synthesis and characterization of silver nanoparticles using Morinda lucida leaf extract and evaluation of its antioxidant and antimicrobial activity. Chem Pap. 2022;76(12):7313–7325.

17. Dada AO, Adekola FA, Dada FE, Adelani-Akande AT, Bello MO, Okonkwo CR, Inyinbor AA, Oluyori AP, Olayanju A, Ajanaku KO, Adetunji CO. Silver nanoparticle synthesis by Acalypha wilkesiana extract: phytochemical screening, characterization, influence of operational parameters, and preliminary antibacterial testing. Heliyon. 2019;5(10):e02517.

18. Khanal LN, Sharma KR, Paudyal H, Parajuli K, Dahal B, Ganga GC, Pokharel YR, Kalauni SK. Green synthesis of silver nanoparticles from root extracts of Rubus ellipticus Sm. and comparison of antioxidant and antibacterial activity. J. Nanomater. 2022;2022(1):1–12.

19. Pramasari N, Anjani AG, Muslikh FA, Lestari TP, Shoviantari F, Septyaningrum SD, Melati IS, Randy GY. Green Synthesis, Optimization and Characterization of Carrot Extract Silver Nanoparticles. Trop J Nat Prod Res. 2024;8(12):9591–9595 .

20. Halilu, E. M., Ngweh, V. A. & Airemwen, C. O. Green Synthesis of Silver Nanoparticles from Parinari curatellifolia Methanol Stem Bark Extract and Evaluation of Antioxidant and Antimicrobial Activities. Trop. J. Nat. Prod. Res. 2023;7(3), 2498–2505.

21. Bernardes LMM, Malta SM, Santos ACC, Silva RA, Rodrigues TS, da Silva MNT, Bittar VP, Borges ALS, Justino AB, Nossol ABS, Martins MM, Espíndola FS, Mendes-Silva AP, Ueira-Vieira C. Green synthesis, characterization, and antimicrobial activity of silver nanoparticles from water-soluble fractions of Brazilian kefir. Sci. Rep. 2025;15(1):1–18.

22. Panda MK, Dhal NK, Kumar M, Mishra PM, Behera RK. Green synthesis of silver nanoparticles and their potential effect on phytopathogens. Mater Today Proc. 2021;35(2):233–238.

23. Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess. 2014;1(3):1–10.

24. Umar Z, Bello UR, Mathur A, Tailor G, Chaudhary J, Singh S. Modulation of biofilm with synthesized silver nanoparticles from Azadirachta indica. Curr Res Green Sustain Chem. 2021;4:100203.

25. Rabochova M, Lorin J, Černíková A. Antibiofilm activity of silver nanoparticles biosynthesized using viticultural waste. PLoS ONE. 2022;17(8):e0272844.

26. Xie Y, Wang L, Yang Y, Zha L, Zhang J, Rong K, Tang W, Zhang J. Antibacterial and anti-biofilm activity of diarylureas against Enterococcus faecium by suppressing the gene expression of peptidoglycan hydrolases and adherence. Front Microbiol. 2022;13(12):1071255.

27. Artono A, Purnami N, Handoko E, Widodo AD, Juniastuti J. Pseudomonas aeruginosa in chronic suppurative otitis media. Infect Chemother.. 2018; 57(1):63-71.

28. Sulthana RN, Rajanikanth A. Green synthesis of silver nanoparticles using seed extract of Foeniculum vulgare and their antibacterial activity. Int J Curr Res Biosci Plant Biol. 2018;5(7):77–83.

29. Keskin C, Aslan S, Baran MF, Baran A, Eftekhari A, Adıcan MT, Ahmadian E, Arslan S, Mohamed AJ. Green synthesis and characterization of silver nanoparticles using Anchusa officinalis: antimicrobial and cytotoxic potential. Int J Nanomedicine. 2025;20(4):4481–4502.

30. Corciovă A, Mircea C, Burlec AF, Fifere A, Moleavin IT, Sarghi A, Tuchilus C, Ivănescu B, Macovei I. Green synthesis and characterization of silver nanoparticles using a Lythrum salicaria extract and in vitro exploration of their biological activities. Life. 2022;12(10):1643 .

31. Fagbemi K, Thonda O, Daramola O, Oyewole O, Adeduro S, Popoola D, Aina A. Antibacterial activity of silver nanoparticles synthesized using Vitex grandifolia against multidrug-resistant (MDR) pathogens. Trop J Nat Prod Res. 2024;8(8):8068–8074.

32. Vicencio-Salas Solís C, Zavaleta-Mancera HA, García-Díaz SE, García-Nava R, Trejo-Téllez LI, Robledo-Paz A. Green synthesis of silver nanoparticles using Cedrela odorata and their fungicidal activity against Fusarium circinatum. J Nanopart Res. 2024;26(7):1-15

33. Gwada CA, Ndivhuwo PS, Matshetshe K, Aradi E, Mdluli P, Moloto N, Otieno F, Airo M. Phytochemical-assisted synthesis, optimization, and characterization of silver nanoparticles for antimicrobial activity. RSC Adv. 2025;15(18):14170–14181.

34. Niluxsshun MCD, Masilamani K, Mathiventhan U. Green synthesis of silver nanoparticles from the extracts of fruit peel of Citrus tangerina, Citrus sinensis, and Citrus limon for antibacterial activities. Bioinorg Chem Appl. 2021;2021(1), 6695734.

35. Rajak KK, Pahilani P, Patel H, Kikani B, Desai R, Kumar H. Green synthesis of silver nanoparticles using Curcuma longa flower extract and antibacterial activity. 2023;1(4)1–20.

36. Castañeda-Aude JE, Morones-Ramírez JR, De Haro-Del Río DA, León-Buitimea A, Barriga-Castro ED, Escárcega-González CE. Ultra-small silver nanoparticles: a sustainable green synthesis approach for antibacterial activity. Antibiotics. 2023;12(3):574

37. Chandrasekaran M, Chinnaiyan U, Sivaprakasam S, Paramasivam S. Biogenic synthesis and characterization of silver nanoparticles using a combined leaf extract for antibacterial and biofilm inhibition properties. Trop J Nat Prod Res. 2025;9(3):1089–1096.

38. Merghni A, Lassoued MA, Noumi E, Hadj Lajimi R, Adnan M, Mastouri M, Snoussi M. Cytotoxic activity and antibiofilm efficacy of biosynthesized silver nanoparticles against methicillin-resistant Staphylococcus aureus strains colonizing cell phones. Can J Infect Dis Med Microbiol. 2022;2022(3):1–10.

39. Almatroudi A. Biofilm resilience: molecular mechanisms driving antibiotic resistance in clinical contexts. Biology (Basel). 2025;14(2): 165.

40. Siddique MH, Aslam B, Imran M, Ashraf A, Nadeem H, Hayat S, Khurshid M, Afzal M, Malik IR, Shahzad M, Qureshi U, Khan ZUH, Muzammil S. Effect of silver nanoparticles on biofilm formation and EPS production of multidrug-resistant Klebsiella pneumoniae. Biomed Res Int. 2020;2020(4):1–11.

41. Holubnycha V, Husak Y, Korniienko V, Bolshanina S, Tveresovska O, Myronov P, Holubnycha M, Butsyk A, Borén T, Banasiuk R. Antimicrobial activity of two different types of silver nanoparticles against a wide range of pathogenic bacteria. Nanomaterials. 2024;14(2):137.

42. Habash MB, Goodyear MC, Park AJ, Surette MD, Vis EC, Harris RJ. Potentiation of tobramycin by silver nanoparticles against Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2017;61(10):15-17.

43. Asma ST, Imre K, Morar A, Imre M, Acaroz U, Shah SRA, Hussain SZ, Arslan-Acaroz D, Istanbullugil FR, Madani K. Natural strategies as potential weapons against bacterial biofilms. Life. 2022;12(10):1618.