An Overview of the Phenolic Constituents and Pharmacological Properties of Extracts and Compounds from Lagerstroemia speciosa Leaves

doi.org/10.26538/tjnpr/v6i4.3

Authors

  • Eric Wei Chiang Chan Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
  • Siu Kuin Wong Xiamen University Malaysia, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
  • Hung Tuck Chan Secretariat of International Society for Mangrove Ecosystems (ISME), Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0129, Japan

Keywords:

Ellagitannins, Gallotannins, Lagerstroemin, Ellagic Acid, Corosolic Acid

Abstract

Lagerstroemia speciosa is a semi-deciduous tree bearing attractive pink or purple flowers with wrinkled petals and yellow stamens. It is a common ornamental tree planted along roadsides, and in gardens and parks. Major types of compounds isolated from L. speciosa leaves include ellagitannins, triterpenes, terpenes, flavonoids, phenolic acids and sterols. Leaf extracts possess properties such as anti-diabetic, anti-cancer, anti-obesity, antioxidant, antibacterial, anti-inflammatory, analgesic, anti-hepatic steatosis, anti-ulcerative colitis, anti-cariogenic and anti-human immunodeficiency virus (anti-HIV). In this article, the phenolic constituents and pharmacological properties of extracts and bioactive compounds from Lagerstroemia speciosa leaves were reviewed. The phenolic compounds of L. speciosa leaves were compiled for the first time. Sources of information were from Google Scholar, PubMed, Science Direct, J-Stage and PubChem. The criteria used for the selection of articles were based on topics rather than on the period of coverage, although recent references were accorded higher priority. Among the ellagitannins, lagerstroemin possesses anti-diabetic properties, valoneic acid dilactone displays potent inhibitory effect on xanthine oxidase and ellagic acid inhibits the growth of HIV and human rhinoviruses (HRVs). Among the triterpenes, corosolic acid (CA) has anti-diabetic, anti-cancer, hepatoprotective and osteoblast differentiation  properties. In conclusion, the anti-diabetic properties of ellagitannins and CA, in comparison with gallotannins, are worthy of further studies. The development of anti-diabetic drugs from L. speciosa leaves presents promising prospects for commercialization following clinical trials. Other topics worthy of further research include the toxicity, pharmacokinetics and metabolism of L. speciosa. The  bioactivity of compounds and their structure-activity relationships need more in-depth studies.

Author Biography

Eric Wei Chiang Chan, Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia

chanwc@ucsiuniversity.edu.my

References

Alonzo DS. Lagerstroemia speciosa (L.) Pers. In: Sosef MSM, Hong LT, Prawirohatmodjo S. (Eds.): Plant resources of South-East Asia No. 5(3): Timber trees; Lesser-known timbers. Bogor, Indonesia: PROSEA Foundation; 1998. 322-324 p.

De Wilde WJ and Duyfjes BE. Miscellaneous information on Lagerstroemia L. (Lythraceae). Thai For

Bull (Bot). 2013; 41:90-101.

Labib RM, Ayoub NA, Singab AB, Al-Azizi MM, Sleem A. Chemical constituents and pharmacological studies of Lagerstroemia indica. Phytopharmacol. 2013; 4:373-389.

Chan EWC, Tan LN, Wong SK. Phytochemistry and pharmacology of Lagerstroemia speciosa: A natural remedy for diabetes. Int J Herb Med. 2014; 2(2):100-105.

Yoshida T, Amakura Y, Yoshimura M. Structural features and biological properties of ellagitannins in

some plant families of the order Myrtales. Int J Mo Sci. 2010; 11(1):79-106.

Landete JM. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Res Int. 2011; 44(5):1150-1160.

Patocka J. Biologically active pentacyclic triterpenes and their current medicine signification. J Appl Biomed. 2003; 1(1):7-12.

Furtado NAJC, Pirson L, Edelberg H, M Miranda L, Loira-Pastoriza C, Preat V, Larondelle Y, André CM.

Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies. Molecules. 2017; 22(3):400.

Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci. 2016; 5:1-15.

Guven H, Arici A, Simsek O. Flavonoids in our foods: A short review. J Basic Clin Health Sci. 2019; 3:96-106.

Singh M, Kaur M, Silakari O. Flavones: An important scaffold for medicinal chemistry. Eur J Med Chem. 2014; 84:206-239.

Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem. 2017; 142:213-228.

Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate.

Asian J Pharm Sci. 2018; 13(1):12-23.

Robbins RJ. Phenolic acids in foods: An overview of analytical methodology. J Agric Food Chem. 2003; 51(10):2866-2887.

NParks [Online]. 2021 [cited 2021 Oct 1]. Lagerstroemia speciosa (L.) Pers. Available from: https://www.nparks.gov.sg/florafaunaweb/flora/2/9/2991.

Park C and Lee JS. Banaba: The natural remedy as antidiabetic drug. Biomed Res. 2011; 22(2):125-29.

Stohs SJ, Miller H, Kaats GR. A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid. Phytother Res. 2012; 26:317-324.

Guo S, Ren X, He K, Chen X, Zhang S, Roller M, Zheng B, Zheng Q, Ho CT, Bai N. The anti-diabetic effect of eight Lagerstroemia speciosa leaf extracts based on the contents of ellagitannins and ellagic acid derivatives. Food Funct. 2020; 11(2):1560-1571.

Xu YM, Tanaka T, Nonaka GI, Nishioka I. Structure elucidation in three new monomeric and dimeric

ellagitannins, flosin B and reginins C and D, isolated from Lagerstroemia flos-regina Retz. Chem Pharm Bull. 1991; 39:647-650.

Bai N, He KA, Roller M, Zheng B, Chen X, Shao Z, Peng T, Zheng Q. Active compounds from Lagerstroemia speciosa, insulin-like glucose uptakestimulatory/ inhibitory and adipocyte differentiationinhibitory activities in 3T3-L1 cells. J Agric Food Chem. 2008; 56(24):11668-11674.

Huang GH, Zhan Q, Li JL, Chen C, Huang DD, Chen WS, Sun LN. Chemical constituents from leaves of Lagerstroemia speciosa L. Biochem Syst Ecol. 2013; 51:109-112.

Takahashi M, Osawa K, Ueda J, Yamamoto F, Tsai CT. The components of the plants of Lagerstroemia genus. III. On the structure of the new tannin ‘lagertannin’ from the leaves of Lagerstroemia speciosa (L.) Pers. J Pharm Soc Jpn. 1976; 96(8):984-987.

Unno T, Sugimoto A, Kakuda T. Xanthine oxidase inhibitors from the leaves of Lagerstroemia speciosa (L.) Pers. J Ethnopharmacol. 2004; 93(2-3):391-395.

Xu YM, Sakai T, Tanaka T, Nonaka GI, Nishioka I. Tannins and related compounds. CVI. Preparation of aminoalditol derivatives of hydrolyzable tannins having α- and β-glucopyranose cores, and its application to the structure elucidation of new tannins, reginins A and B and flosin A, isolated from Lagerstroemia flos-reginaeRetz. Chem Pharm Bull. 1991; 39(3):639-646.

Hayashi T, Maruyama H, Kasai R, Hattori K, Takasuga S, Hazeki O, Yamasaki K, Tanaka T. Ellagitannins from Lagerstroemia speciosa as activators of glucose transport in fat cells. Planta Med. 2002; 68(2):173-175.

Tanaka T, Tong HH, Xu YM, Ishimaru K, Nonaka GI, Nishioka I. Tannins and related compounds. CXVII. Isolation and characterization of three new ellagitannins, lagerstannins A, B and C, having a gluconic acid core, from Lagerstroemia speciosa (L.) Pers. Chem Pharm Bull. 1992; 40(11):2975-2980.

Hattori K, Sukenobu N, Sasaki T, Takasuga S, Hayashi T, Kasai R, Yamasaki K, Hazeki O. Activation of insulin receptors by lagerstroemin. J Pharmacol Sci. 2003; 93(1):69-73.

Choi J, Cho JY, Choi SJ, Jeon H, Kim YD, Htwe KM, Chin YW, Lee WS, Kim J, Yoon KD. Two new henolic

glucosides from Lagerstroemia speciosa. Molecules. 2015; 20(3):4483-4491.

Takahashi M, Ueda J, Sasaki JI. The components of the plants of Lagerstroemia genus. IV. On the presence of the ellagic acid derivatives from the leaves of Lagerstroemia subcostata Koehne. and L. speciosa (L.) Pers. and the synthesis of 3,4-di-O-methylellagic acid. J Pharm Soc Jpn. 1977; 97(8):880-882.

Hosoyama H, Sugimoto A, Suzuki Y, Sakane I, Kakuda T. Isolation and quantitative analysis of the alphaamylase inhibitor in Lagerstroemia speciosa (L.) Pers. (Banaba). J Pharm Soc Jpn. 2003; 23(7):599-605.

Hou W, Li Y, Zhang Q, Wei X, Peng A, Chen L, Wei Y. Triterpene acids isolated from Lagerstroemia speciosa leaves as α‐glucosidase inhibitors. Phytother Res. 2009; 23(5):614-618.

Joshi NP, Vaidya VV, Pawar SS, Gadgil JN. Development and validation of HPLC method for simultaneous determination of bio-active markers corosolic acid, asiatic acid and β-sitosterol from leaves of Lagerstroemia speciosa Linn. and from marketed formulation. Int J Pharm Pharm Sci. 2013; 5:223-226.

Murakami C, Myoga K, Kasai R, Ohtani K, Kurokawa T, Ishibashi S, Dayrit F, Padolna WG, Yamasaki K. Screening of plant constituents for effect on glucose transport activity in Ehrlich ascites tumour cells. Chem Pharm Bull. 1993; 41(12):2129-2131.

Okada Y, Omae A, Okuyama T. A new triterpenoid isolated from Lagerstroemia speciosa (L.) Pers. Chem Pharm Bull. 2003; 51(4):452-454.

Ragasa CY, Ngo HT, Rideout JA. Terpenoids and sterols from Lagerstroemia speciosa. J Asian Nat Prod Res. 2005; 7(1):7-12.

Takahashi M, Osawa K, Sato T, Ueda J, Fujita Y. The chemical structure of the new component ‘lageracetal’ from the leaves of Lagerstroemia speciosa (L.) Pers. J Pharm Soc Jpn. 1973; 93(7):861-863.

Koshio K, Murai Y, Sanada A, Taketomi T, Yamazaki M, Kim TS, Boo HO, Obuchi M, Iwashina T. Positive relationship between anthocyanin and corosolic acid contents in leaves of Lagerstroemia speciosa Pers. Trop Agric Dev. 2012; 56(2):49-52.

Chan EWC and Wong SK. Corosolic acid: A synopsis on its anticancer properties. Asian J Pharm Clin Res. 2018; 11(9):32-36.

Zhao J, Zhou H, An Y, Shen K, Yu L. Biological effects of corosolic acid as an anti-inflammatory, anti-metabolic syndrome and anti-neoplasic natural compound. Oncol Lett. 2021; 21(2):1-14.

Chan EWC, Soon CY, Tan JB, Wong SK, Hui YW. Ursolic acid: An overview on its cytotoxic activities

against breast and colorectal cancer cells. J Integr Med. 2019; 17(3):155-160.

Hernawan UE, Sutarno S, Setyawan AD. Hypoglycemic and hypolipidemic activities of water extract of Lagerstroemia speciosa (L.) Pers. leaves in diabetic rat. Asian J Nat Prod Biochem. 2004; 2(1):15-23.

Unno T, Sakane I, Masumizu T, Kohno M, Kakuda T. Antioxidative activity of water extracts of Lagerstroemia speciosa leaves. Biosci Biotechnol Biochem. 1997; 61(10):1772-1774.

Thitikornpong W, Phadungcharoen T, Sukrong S. Pharmacognostic evaluations of Lagerstroemia speciosa leaves. J Med Plants Res. 2011; 5(8):1330-1337.44. Rohit Singh T and Ezhilarasan D. Lagerstroemia speciosa (L.) Pers., ethanolic leaves extract attenuates dapsone-induced liver inflammation in rats. Drug Chem Toxicol. 2021; 6:1-10.

Jayakumar KS, Sajan JS, Nair RA, Pillai PP, Deepu S, Padmaja R, Agarwal A, Pandurangan AG. Corosolic acid content and SSR markers in Lagerstroemia speciosa (L.) Pers.: A comparative analysis among populations across the Southern Western Ghats of India. Phytochem. 2014; 106:94-103.

Sonar MP and Rathod VK. Extraction of type II antidiabetic compound corosolic acid from

Lagerstroemia speciosa by batch extraction and three phase partitioning. Biocatal Agric Biotechnol. 2020; 27:101694.

Kakuda T, Sakane I, Takihara T, Ozaki Y, Takeuchi H, Kuroyanagi M. Hypoglycemic effect of extracts from Lagerstroemia speciosa L. leaves in genetic diabetic KKAY mice. Biosci Biotechnol Biochem. 1996; 60(2):204-208.

Liu F, Kim JK, Li Y, Liu XQ, Li J, Chen X. An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake–stimulatory and adipocyte differentiation–inhibitory activities in 3T3-L1 cells. J Nutr. 2001; 131(9):2242-2247.

Judy WV, Hari SP, Stogsdill WW, Judy JS, Naguib YM, Passwater R. Antidiabetic activity of a standardized extract (Glucosol™) from Lagerstroemia speciosa leaves in Type II diabetics: A dose-dependence study. J Ethnopharmacol. 2003; 87(1):115-117.

Deocaris CC, Aguinaldo RR, Ysla JL, Asencion AS, Mojica ER. Hypoglycemic activity of irradiated Banaba (Lagerstroemia speciosa Linn.) leaves. J Appl Sci Res. 2005; 1(1):95-98.

Tsuchibe S, Kataumi S, Mori M, Mori H. An inhibitory effect on the increase in the postprandial glucose by banaba extract capsule enriched corosolic acid. J Integr Stud Diet Habits. 2006; 17:255-259.

Miura T, Takagi S, Ishida T. Management of diabetes and its complications with banaba Lagerstroemia speciosa L.) and corosolic acid. Evid-based Compl Altern Med. 2012; Article ID 871495, 8 p.

Saha BK, Bhuiyan MN, Mazumder K, Haque KF. Hypoglycemic activity of Lagerstroemia speciosa L. extract on streptozotocin-induced diabetic rat: Underlying mechanism of action. Bangladesh J

Pharmacol. 2009; 4(2):79-83.

Thuppia A, Rabintossaporn P, Saenthaweesuk S, Ingkaninan K, Sireeratawong S. The hypoglycemic effect of water extract from leaves of Lagerstroemia speciosaL. in streptozotocin-induced diabetic rats.

Songklanakarin J Sci Technol. 2009; 31(2):133-137.

Tanquilut NC, Tanquilut MR, Estacio MA, Torres EB, Rosario JC, Reyes BA. Hypoglycemic effect of

Lagerstroemia speciosa (L.) Pers. on alloxan-induced diabetic mice. J Med Plants Res. 2009; 3(12):1066-1071.

Ichikawa H, Yagi H, Tanaka T, Cyong JC, Masaki T. Lagerstroemia speciosa extract inhibits TNF-induced activation of nuclear factor-κB in rat cardiomyocyte H9c2 cells. J Ethnopharmacol. 2010; 128(1):254-256.

Saumya SM and Basha PM. Antioxidant effect of Lagerstroemia speciosa Pers (Banaba) leaf extract in streptozotocin-induced diabetic mice. Ind J Exp Biol. 2011; 49:125-131.

Aljarba NH, Hasnain MS, AlKahtane A, Algamdy H, Alkahtani S. Lagerstroemia speciosa extract ameliorates oxidative stress in rats with diabetic nephropathy by inhibiting AGEs formation. J King Saud Univ Sci. 2021; 33:101493.

Mousa AM, El-Sammad NM, Abdel-Halim AH, Anwar N, Khalil WK, Nawwar M, Hashim AN, Elsayed EA, Hassan SK. Lagerstroemia speciosa (L.) Pers leaf extract attenuates lung tumorigenesis via alleviating oxidative stress, inflammation and apoptosis. Biomol. 2019; 9:871.

Rohit Singh T and Ezhilarasan D. Ethanolic extract of Lagerstroemia speciosa (L.) Pers., induces apoptosis and cell cycle arrest in HepG2 cells. Nutr Cancer. 2020; 72(1):146-156.

Rohit Singh T and Ezhilarasan D. Lagerstroemia speciosa (L.) Pers. triggers oxidative stress mediated apoptosis via intrinsic mitochondrial pathway in HepG2 cells. Environ Toxicol. 2020; 35(11):1225-1233.

Suzuki Y, Unno T, Ushitani M, Hayashi K, Kakuda T. nti-obesity activity of extracts from Lagerstroemia speciosa L. leaves on female KK-Ay mice. J Nutr Sci Vitaminol. 1999; 45(6):791-795.

Chan EWC, Lye PY, Tan LN. Analysis and evaluation of antioxidant properties of Thai herbal teas. Int Adv Sci Arts. 2011; 2(2):8-15.

Chan EWC, Lye PY, Tan LN, Eng SY, Tan YP, Wong ZC. Effects of drying method and particle size on the antioxidant properties of leaves and teas of Morus alba, Lagerstroemia speciosa and Thunbergia laurifolia. Chem Ind Chem Eng Q. 2012; 18(3):465-472.

Ambujakshi HR, Surendra V, Haribabu T, Goli D. Antibacterial activity of leaves of Lagerstroemia

speciosa (L.) Pers. J Pharm Res. 2009; 2(6):1028.

Priya TT, Sabu MC, Jolly CI. Free radical scavenging and anti-inflammatory properties of Lagerstroemia speciosa (L.). Inflammopharmacol. 2008; 16(4):182-187.

Gupta A, Agrawal VK, Rao CV. Exploration of analgesic and anti-inflammatory potential of Lagerstroemia speciosa. J Appl Pharm Sci. 2017; 7(2):156-161.

Tandrasasmita OM, Berlian G, Tjandrawinata RR. Molecular mechanism of DLBS3733, a bioactive fraction of Lagerstroemia speciosa (L.) Pers., on ameliorating hepatic lipid accumulation in HepG2 cells. Biomed Pharmacother. 2021; 141:111937.

Chaudhary G, Mahajan UB, Goyal SN, Ojha S, Patil CR, Subramanya SB. Protective effect of Lagerstroemia speciosa against dextran sulfate sodium induced ulcerative colitis in C57BL/6 mice. Am J Transl Res. 2017; 9(4):1792-1800.

Vivek MN, Sunil SV, Pramod NJ, Prashith KT, Mukunda S, Mallikarjun N. Anticariogenic activity of

Lagerstroemia speciosa (L.). Sci Technol Arts Res J. 2012; 1(1):53-56.

Nutan MM, Goel T, Das T, Malik S, Suri S, Rawat AK, Srivastava SK, Tuli R, Malhotra S, Gupta SK. Ellagic acid and gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity. Ind J Med Res. 2013; 137(3):540-548.

López-Murillo LD, González-Ortiz M, Martínez-Abundis E, Cortez-Navarrete M, Pérez-Rubio KG. Effect of banaba (Lagerstroemia speciosa) on metabolic syndrome, insulin sensitivity, and insulin secretion. J Med Food. 2022; 25(2):177-182.

Park SW, Kwon MJ, Yoo JY, Choi HJ, Ahn YJ. Antiviral activity and possible mode of action of ellagic

acid identified in Lagerstroemia speciosa leaves toward human rhinoviruses. BMC Compl Altern Med. 2014; 14(1):1-8.

Liu X, Kim JK, Li Y, Li J, Liu F, Chen X. Tannic acid stimulates glucose transport and inhibits adipocyte

differentiation in 3T3-L1 cells. J Nutr. 2005; 135(2):165-171.

Li Y, Kim J, Li J, Liu F, Liu X, Himmeldirk K, Ren Y, Wagner TE, Chen X. Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-D-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway. Biochem Biophy Res Commun. 2005; 336(2):430-437.

Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY. Radical scavenging and antioxidant activity of tannic

acid. Arab J Chem. 2010; 3(1):43-53.

Klein G, Kim J, Himmeldirk K, Cao Y, Chen X. Antidiabetes and anti-obesity activity of Lagerstroemia speciosa. Evid-Based Compl Altern Med. 2007; 4(4):401-407.

Qian XP, Zhang XH, Sun LN, Xing WF, Wang Y, Sun SY, Ma MY, Cheng ZP, Wu ZD, Xing C, Chen BN.

Corosolic acid and its structural analogs: A systematic review of their biological activities and underlying mechanism of action. Phytomed. 2021; 91:153696.

Zhao J, Zhou H, An Y, Shen K, Yu L. Biological effects of corosolic acid as an anti-inflammatory, anti-metabolic syndrome and anti-neoplasic natural compound. Oncol Lett. 2021; 21(2):84.

Hou W, Li Y, Zhang Q, Wei X, Peng A, Chen L, Wei Y. Triterpene acids isolated from Lagerstroemia speciosa leaves as α‐glucosidase inhibitors. Phytother Res. 2009; 23(5):614-618.

Miura T, Itoh Y, Kaneko T, Ueda N, Ishida T, Fukushima M, Matsuyama F, Seino Y. Corosolic acid

induces GLUT4 translocation in genetically type 2 diabetic mice. Biol Pharm Bull. 2004; 27(7):1103-1105.

Miura T, Ueda N, Yamada K, Fukushima M, Ishida T, Kaneko T, Matsuyama F, Seino Y. Antidiabetic effects of corosolic acid in KK-Ay diabetic mice. Biol Pharm Bull. 2006; 29(3):585-587.

Tidke PS and Patil CR. Nrf2 activator corosolic acid meliorates alloxan induced diabetic nephropathy in mice. Asian Pac J Trop Biomed. 2017; 7(9):797-804.

Takagi S, Miura T, Ishihara E, Ishida T, Chinzei Y. Effect of corosolic acid on dietary hypercholesterolemia and hepatic steatosis in KK-Ay diabetic mice. Biomed Res. 2010; 31(4):213-218.

Fukushima M, Matsuyama F, Ueda N, Egawa K, Takemoto J, Kajimoto Y, Yonaha N, Miura T, Kaneko T, Nishi Y, Mitsui R. Effect of corosolic acid on postchallenge plasma glucose levels. Diabetes Res Clin Pract. 2006; 73(2):174-177.

Xu Y, Ge R, Du J, Xin H, Yi T, Sheng J, Wang Y, Ling C. Corosolic acid induces apoptosis through

mitochondrial pathway and caspases activation in human cervix adenocarcinoma HeLa cells. Cancer Lett. 2009; 284(2):229-237.

Sung B, Kang YJ, Kim DH, Hwang SY, Lee Y, Kim M, Yoon JH, Kim CM, Chung HY, Kim ND. Corosolic acid induces apoptotic cell death in HCT116 human colon cancer cells through a caspase-dependent pathway. Int J Mol Med. 2014; 33(4):943-949.

Zhang BY, Zhang L, Chen YM, Qiao X, Zhao SL, Li P, Liu JF, Wen X, Yang J. Corosolic acid inhibits colorectal cancer cells growth as a novel HER2/HER3 hetero-dimerization inhibitor. Br J Pharmacol. 2021; 178(6):1475-1491.

Woo SM, Seo SU, Min KJ, Im SS, Nam JO, Chang JS, Kim S, Park JW, Kwon TK. Corosolic acid induces nonapoptotic cell death through generation of lipid reactive oxygen species production in human renal carcinoma Caki cells. Int J Mol Sci. 2018; 19:1309.

Jin M, Wu Y, Lou Y, Liu X, Dai Y, Yang W, Liu C, Huang G. Corosolic acid reduces A549 and PC9 cell

proliferation, invasion, and chemoresistance in NSCLC via inducing mitochondrial and liposomal oxidative stress. Biomed Pharmacother. 2021; 144:112313.

Sun LW, Kao SH, Yang SF, Jhang SW, Lin YC, Chen CM, Hsieh YH. Corosolic acid attenuates the

invasiveness of glioblastoma cells by promoting CHIP-mediated AXL degradation and inhibiting

GAS6/AXL/JAK axis. Cells. 2021; 10:2919.

Chen JL, Lai CY, Ying TH, Lin CW, Wang PH, Yu FJ, Liu CJ, Hsieh YH. Modulating the ERK1/2–MMP1 axis through corosolic acid inhibits metastasis of human oral squamous carcinoma cells. Int J Mol Sci. 2021; 22(16):8641.

Zhang C, Niu Y, Wang Z, Xu X, Li Y, Ma L, Wang J, Yu Y. Corosolic acid inhibits cancer progression by

decreasing the level of CDK19-mediated O-GlcN Acylation in liver cancer cells. Cell Death Dis. 2021;

(10):1-11.

Guo X, Cui R, Zhao J, Mo R, Peng L, Yan M. Corosolic acid protects hepatocytes against ethanol-induced damage by modulating mitogen-activated protein kinases and activating autophagy. Eur J Pharmacol. 2016; 791:578-588.

Shim KS, Lee SU, Ryu SY, Min YK, Kim SH. Corosolic acid stimulates osteoblast differentiation by activating transcription factors and MAP kinases. Phytother Res. 2009; 23(12):1754-1758.

Che Y, Wang Z, Yuan Y, Zhou H, Wu H, Wang S, Tang Q. By restoring autophagic flux and improving

mitochondrial function, corosolic acid protects against Dox-induced cardiotoxicity. Cell Biol Toxicol. 2021; 22:1-17.

Kim SJ, Cha JY, Kang HS, Lee JH, Lee JY, Park JH, Bae JH, Song DK, Im SS. Corosolic acid ameliorates

acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages. BMB Rep. 2016;

(5):276-281.

Yamaguchi Y, Yamada K, Yoshikawa N, Nakamura K, Haginaka J, Kunitomo M. Corosolic acid prevents oxidative stress, inflammation and hypertension in SHR/NDmcr-cp rats, a model of metabolic syndrome. Life Sci. 2006; 79(26):2474-2479.

Li BB, Pang K, Hao L, Zang GH, Wang J, Wang XT, Zhang JJ, Cai LJ, Yang CD, Han CH. Corosolic acid

improves erectile function in metabolic syndrome rats by reducing reactive oxygen species generation and increasing nitric oxide bioavailability. Food Sci Technol. 2022; 42:e108821.

Downloads

Published

2022-04-01

How to Cite

Wei Chiang Chan, E., Kuin Wong, S., & Tuck Chan, H. (2022). An Overview of the Phenolic Constituents and Pharmacological Properties of Extracts and Compounds from Lagerstroemia speciosa Leaves: doi.org/10.26538/tjnpr/v6i4.3. Tropical Journal of Natural Product Research (TJNPR), 6(4), 470–479. Retrieved from https://tjnpr.org/index.php/home/article/view/76