Non-Genetic Engineering Methods to Enhance Cannabinoid Production in Cannabis sp.: A Systematic Review
Main Article Content
Abstract
Non-genetic engineering of metabolites has become a key focus in enhancing cannabinoid production in Cannabis. With the increasing demand for cannabinoid-rich products, rapid and affordable yields improvements can be achieved through non-genetic methods. These methods avoid genetic engineering and regulatory challenges in Cannabis development. Although there are limited studies in the field due to historical restrictions on Cannabis, existing literature has been summarised to aid further exploration. Therefore, this study aims to explore non-genetic engineering methods for enhancing cannabinoid yields in Cannabis sp. A total of 30 selected articles from 1980 to 2024 on cannabinoid metabolites engineering were collected from Scopus, PubMed, and Science Direct, then analyzed and visualized using VOSviewer. The articles reviewed various non-genetic engineering methods, including biotic and abiotic elicitors, environmental stress manipulation, and nutrient management, to provide insights into practical approaches for enhancing cannabinoid production to meet industrial and pharmaceutical needs
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Yongram C, Meeboonya R, Chokchaisiri S, Wonganan O, Sansila P, Kaewudom P, Kakatum N, Kanjanakaroon Y, Kamoltham T, Roongpisuthipong A, Sripan P. A Qualitative Ethnopharmacological Analysis of Cannabis-Based Formulations for Insomnia in Thai Traditional Medicine Recipes. Trop J Nat Prod Res. 2025; 9(6): 2673-2683. Doi: 10.26538/tjnpr/v9i6.43.
Mead A. Legal and regulatory issues governing Cannabis and Cannabis-derived products in the United States. Front. Plant Sci. 2019; 10: 1-10. Doi: 10.3389/fpls.2019.00697.
Thomas BF, ElSohly MA. The analytical chemistry of Cannabis: Quality assessment, assurance, and regulation of medicinal marijuana and cannabinoid preparations. Elsevier. 2015.
Reiss MJ, Straughan R. Improving nature?: the science and ethics of genetic engineering. Cambridge University Press. 2001; 1-281 p.
Jalali S, Salami S A, Sharifi M, Sohrabi S. Signaling compounds elicit expression of key genes in cannabinoid pathway and related metabolites in Cannabis. Ind. Crops Prod. 2019; 133: 105-110. Doi: 10.1016/j.indcrop.2019.03.004.
Garrido J, Rico S, Corral C, Sánchez C, Vidal N, Martínez-Quesada JJ, Ferreiro-Vera C. Exogenous application of stress-related signaling molecules affect growth and cannabinoid accumulation in medical cannabis (Cannabis sativa L.). Front. Plant Sci. 2022; 13: 01-13. Doi: 10.3389/fpls.2022.1082554.
Mirzamohammad E, Alirezalu A, Alirezalu K, Norozi A, Ansari A. Improvement of the antioxidant activity, phytochemicals, and cannabinoid compounds of Cannabis sativa by salicylic acid elicitor. Food Sci. Nutr. 2021; 9(12): 6873-6881. Doi: 10.1002/fsn3.2643.
Park SH, Pauli CS, Gostin EL, Staples SK, Seifried D, Kinney C, Vanden Heuvel BD. Effects of short-term environmental stresses on the onset of cannabinoid production in young immature flowers of industrial hemp (Cannabis sativa L.). J. Cannabis Res. 2022; 4: 1-13. Doi: 10.1186/s42238-021-00111-y.
Danziger N, Bernstein N. Plant architecture manipulation increases cannabinoid standardization in ‘drug-type’ medical Cannabis. Ind. Crops Prod. 2021; 167: 1-16. Doi: 10.1016/j.indcrop.2021.113528.
Darigh F, Iranbakhsh A, Ardebili ZO, Ebadi M, Hassanpour H. Simulated microgravity contributed to modification of callogenesis performance and secondary metabolite production in Cannabis indica. Plant Physiol Biochem. 2022; 186: 157-168. Doi: 10.1016/j.plaphy.2022.07.012.
Rodziewicz P, Loroch S, Marczak Ł, Sickmann A, Kayser O. Cannabinoid synthases and osmoprotective metabolites accumulate in the exudates of Cannabis sativa L. glandular trichomes. Plant Sci. J. 2019; 284: 108-116. Doi: 10.1016/j.plantsci.2019.04.008.
Rudyanto M, Widiandani T, Poerwono H, Pratama MRF. Bibliometric Analysis of Medicinal Plants from Brunei Darussalam: Uncovering Novel Anticancer Targets. Trop J Nat Prod Res. 2025; 9(2): 585–612. Doi: 10.26538/tjnpr/v9i2.23.
Hairani MAS, Abdul Majid FA, Zakaria NH, Hudiyanti D, Fadhlina A, Sheikh HI. Anti-diabetic properties of traditional herbal concoction containing Eleutherine palmifolia (L.) Merr., Momordica charantia L., and Syzygium polyanthum (Wight.): a bibliometric analysis. Food Production, Processing and Nutrition. 2023; 5(1): 1-24. Doi: 10.1186/s43014-023-00172-x.
Yeung AWK. Bibliometric study on functional magnetic resonance imaging literature (1995-2017) concerning chemosensory perception. Chemosens. Percept. 2018; 11: 42-50. Doi: 10.1007/s12078-018-9243-0.
Dewi NKSM, Ramona Y, Saraswati MR, Wihandani DM, Wirasuta IMAG. The potential of the flavonoid content of Ipomoea batatas L. as an alternative analog GLP-1 for Diabetes Type 2 Treatment—Systematic Review. Metabolites. 2023; 14(1): 1-23. Doi: 10.3390/metabo14010029.
Yin H, Zhang F, Yang X, Meng X, Miao Y, Noor Hussain MS, Yang L, Li Z. Research trends of artificial intelligence in pancreatic cancer: a bibliometric analysis. Front. Oncol. 2022; 12: 1-13. Doi: 10.3389/fonc.2022.973999.
Flores-Sanchez IJ, Peč J, Fei J, Choi YH, Dušek J, Verpoorte R. Elicitation studies in cell suspension cultures of Cannabis sativa L. J. Biotechnol. 2009; 143(2): 157-168. Doi: 10.1016/j.jbiotec.2009.05.006.
Islam MJ, Ryu BR, Rahman MH, Cheong EJ, Wang MH, Lim JD, Hossain MA, Lim YS. Cannabinoid accumulation in hemp depends on ROS generation and interlinked with morpho-physiological acclimation and plasticity under indoor LED environment. Front. Plant Sci. 2022; 13: 01-16. Doi: 10.3389/fpls.2022.984410.
Llewellyn D, Golem S, Foley E, Dinka S, Jones AMP, Zheng Y. Indoor grown Cannabis yield increased proportionally with light intensity, but ultraviolet radiation did not affect yield or cannabinoid content. Front. Plant Sci. 2022; 13: 01-12. Doi: 10.3389/fpls.2022.974018.
Arora AS, Yun CM. Dynamic spectrum lighting impact on plant morphology and cannabinoid profile of medical and recreational Cannabis—A novel leapfrog strategy towards shaping the future of horticulture lighting. Ind. Crops Prod. 2023; 199: 1-12. Doi: 10.1016/j.indcrop.2023.116799.
Namdar D, Charuvi D, Ajjampura V, Mazuz M, Ion A, Kamara I, Koltai H. LED lighting affects the composition and biological activity of Cannabis sativa secondary metabolites. Ind. Crops Prod. 2019; 132: 177-185. Doi: 10.1016/j.indcrop.2019.02.016.
Morello V, Brousseau VD, Wu N, Wu BS, MacPherson S, Lefsrud M. Light quality impacts vertical growth rate, phytochemical yield and cannabinoid production efficiency in Cannabis sativa. Plants. 2022; 11(21): 1-19. Doi: 10.3390/plants11212982.
Danziger N, Bernstein N. Light matters: Effect of light spectra on cannabinoid profile and plant development of medical cannabis (Cannabis sativa L.). Ind. Crops Prod. 2021; 164: 1-11. Doi: 10.1016/j.indcrop.2021.113351.
Kotiranta S, Pihlava JM, Kotilainen T, Palonen P. The morphology, inflorescence yield, and secondary metabolite accumulation in hemp type Cannabis sativa can be influenced by the R: FR ratio or the amount of short wavelength radiation in a spectrum. Ind. Crops Prod. 2024; 208: 1-11. Doi: 10.1016/j.indcrop.2023.117772.
Morimoto S, Tanaka Y, Sasaki K, Tanaka H, Fukamizu T, Shoyama Y, Shoyama Y, Taura F. Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells. J. Biol. Chem. 2007; 282(28): 20739-20751. Doi: 10.1074/jbc.M700133200.
Sirikantaramas S, Taura F, Morimoto S, Shoyama Y. Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr. Pharm. Biotechnol. 2007; 8(4): 237-243. Doi: 10.2174/138920107781387456.
Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y. Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol. 2005; 46(9): 1578-1582. Doi: 10.1093/pcp/pci166.
Hassanpour H, Ghanbarzadeh M. Induction of cell division and antioxidative enzyme activity of Matricaria chamomilla L. cell line under clinorotation. Plant Cell Tissue Organ Cult. 2021; 146: 1-10. Doi: 10.1007/s11240-021-02060-z.
Pozhvanov G, Sharova E, Medvedev S. Microgravity modelling by two-axial clinorotation leads to scattered organisation of cytoskeleton in Arabidopsis seedlings. Funct. Plant Biol. 2021; 48(10): 1062-1073. Doi: 10.1071/FP20225.
Kamal KY, van Loon JJ, Medina FJ, Herranz R. Differential transcriptional profile through cell cycle progression in Arabidopsis cultures under simulated microgravity. Genomics. 2019; 111(6): 1956-1965. Doi: 10.1016/j.ygeno.2019.01.007.
Jin J, Chen H, Cai W. Transcriptomic analysis reveals the effects of microgravity on rice calli on board the Chinese spaceship Shenzhou 8. Microgravity Sci. Technol. 2018; 30(6): 807-816. Doi: 10.1007/s12217-018-9633-6.
Zhang Y, Wang L, Xie J, Zheng H. Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. Planta. 2015; 241: 475-488. Doi: 10.1007/s00425-014-2196-x.
Xu P, Chen H, Jin J, Cai W. Single-base resolution methylome analysis shows epigenetic changes in Arabidopsis seedlings exposed to microgravity spaceflight conditions on board the SJ-10 recoverable satellite. NPJ Microgravity. 2018; 4(1): 1-11. Doi: 10.1038/s41526-018-0046-z.
Cai W, Chen H, Jin J, Xu P, Bi T, Xie Q, Pang X, Hu J. Plant adaptation to microgravity environment and growth of plant cells in altered gravity conditions. *Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite.* 2019: 131-166. Doi: 10.1007/978-981-13-6325-2.
Xiao Y, Liu Y, Wang G. Involvement of nitric oxide in the mechanism of biochemical alterations induced by simulated microgravity in Microcystis aeruginosa. Adv. Space Res. 2012; 49(5): 850-858. Doi: 10.1016/j.asr.2011.11.003.
Soga K, Yamazaki C, Kamada M, Tanigawa N, Kasahara H, Yano S, Kojo KH, Kutsuna N, Kato T, Hashimoto T, Kotake T. Modification of growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls grown under microgravity conditions in space. Physiol. Plant. 2018; 162(1): 135-144. Doi: 10.1111/ppl.12640.
Jin J, Chen H, Cai W. Transcriptome analysis of Oryza sativa calli under microgravity. Microgravity Sci. Technol. 2015; 27: 437-453. Doi: 10.1007/s12217-015-9432-2.
Švécarová M, Kovalová M, Ondřej V. Effect of simulated microgravity on gene expression during embryogenesis of Arabidopsis thaliana. BioRxiv. 2018: 471037. Doi: 10.1101/471037.
Giri CC, Zaheer M. Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell Tissue Organ Cult. 2016; 126: 1-18. Doi: 10.1007/s11240-016-0985-6.
Fellermeier M, Zenk MH. Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett. 1998; 427(2): 283-285. Doi: 10.1016/S0014-5793(98)00450-5.
Page JE, Boubakir Z. Aromatic prenyltransferase from Cannabis. Google Patents. 2014.
Ali F, Qanmber G, Wei Z, Yu D, Li YH, Gan L, Li F, Wang Z. Genome-wide characterization and expression analysis of geranylgeranyl diphosphate synthase genes in cotton (Gossypium spp.) in plant development and abiotic stresses. BMC Genomics. 2020; 21: 1-15. Doi: 10.1186/s12864-020-06970-8.
Rai A, Smita SS, Singh AK, Shanker K, Nagegowda DA. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis. Mol. Plant. 2013; 6(5): 1531-1549. Doi: 10.1093/mp/sst058.
Zhao Y, Chen Y, Gao M, Yin H, Wu L, Wang Y. Overexpression of geranyl diphosphate synthase small subunit 1 (LcGPPS.SSU1) enhances the monoterpene content and biomass. Ind. Crop Prod. 2020; 143: 1-9. Doi: 10.1016/j.indcrop.2019.111926.
Inabuy FS, Fischedick JT, Lange I, Hartmann M, Srividya N, Parrish AN, Xu M, Peters RJ, Lange BM. Biosynthesis of diterpenoids in Tripterygium adventitious root cultures. Plant Physiol. 2017; 175(1): 92-103. Doi: 10.1104/pp.17.00659.
Allen KA, Gomes EN, Lockhart A, Wu Q, Di R, Simon JE. Short-term salicylic acid application induces the expression of GPPS and NEPS1 in catnip. Theor. Exp. Plant Physiol. 2024; 36: 299-312. Doi: 10.1007/s40626-024-00322-7.
Saloner A, Bernstein N. Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.). Ind. Crop Prod. 2021; 167: 1-13. Doi: 10.1016/j.indcrop.2021.113516.
Saloner A, Bernstein N. Nitrogen source matters: High NH₄/NO₃ ratio reduces cannabinoids, terpenoids, and yield in medical Cannabis. Front. Plant Sci. 2022; 13: 1-17.
Saloner A, Bernstein N. Effect of potassium (K) supply on cannabinoids, terpenoids and plant function in medical cannabis. Agronomy. 2022; 12(5): 1-13. Doi: 10.3389/fpls.2022.830224.
Massuela DC, Munz S, Hartung J, Nkebiwe PM, Graeff-Hönninger S. Cannabis hunger games: nutrient stress induction in flowering stage—impact of organic and mineral fertilizer levels on biomass, cannabidiol (CBD) yield and nutrient use efficiency. Front. Plant Sci. 2023; 14: 1-19. Doi: 10.3389/fpls.2023.1233232.
Velechovský J, Malík M, Šenkyřík JB, Tlustoš P. Effect of augmented nutrient composition and fertigation system on biomass yield and cannabinoid content of medicinal cannabis (Cannabis sativa L.) cultivation. Front. Plant Sci. 2024; 15: 1-19. Doi: 10.3389/fpls.2024.1322824.
Wei X, Zhou W, Long S, Guo Y, Qiu C, Zhao X, Wang Y. Effects of different N, P, and K rates on the growth and cannabinoid content of industrial hemp. J. Nat. Fibers. 2023; 20(1): 1-9. Doi: 10.1080/15440478.2022.2159605.
Song C, Saloner A, Fait A, Bernstein N. Nitrogen deficiency stimulates cannabinoid biosynthesis in medical cannabis plants by inducing a metabolic shift towards production of low-N metabolites. Ind. Crops Prod. 2023; 202: 1-13. Doi: 10.1016/j.indcrop.2023.116969.
Dilena E, Close DC, Hunt I, Garland SM. Investigating how nitrogen nutrition and pruning impacts on CBD and THC concentration and plant biomass of Cannabis sativa. Sci. Rep. 2023; 13(1): 1-10. Doi: 10.1038/s41598-023-46369-5.
Landi S, Berni R, Capasso G, Hausman JF, Guerriero G, Esposito S. Impact of nitrogen nutrition on Cannabis sativa: an update on the current knowledge and future prospects. Int. J. Mol. Sci. 2019; 20(22): 1-16. Doi: 10.3390/ijms20225803.
De Prato L, Ansari O, Hardy GESJ, Howieson J, O’Hara G, Ruthrof KX. Morpho-physiology and cannabinoid concentrations of hemp (Cannabis sativa L.) are affected by potassium fertilisers and microbes under tropical conditions. Ind. Crops Prod. 2022; 182: 1-13. Doi: 10.1016/j.indcrop.2022.114605.
Farag S, Kayser O. Cannabinoids production by hairy root cultures of Cannabis sativa L. Am. J. Plant Sci. 2015; 6(11): 1874-1884. Doi: 10.4236/ajps.2015.611188.
Elhendawy MA, Wanas AS, Radwan MM, Azzaz NA, Toson ES, ElSohly MA. Chemical and biological studies of Cannabis sativa roots. Med. Cannabis Cannabinoids. 2019; 1(2): 104-111. Doi: 10.1159/000495582.
Mansouri H, Salari F, Asrar Z. Ethephon application stimulats cannabinoids and plastidic terpenoids production in Cannabis sativa at flowering stage. Ind. Crops Prod. 2013; 46: 269-273. Doi: 10.1016/j.indcrop.2013.01.025.
Ruzgas R, Tilvikienė V, Barčauskaitė K, Viršilė A, Žydelis R. Ethephon’s effects on sexual expression and cannabinoid production in monoecious and dioecious varieties of hemp (Cannabis sativa L.): A field trial. Ind. Crops Prod. 2024; 210: 1-11. Doi: 10.1016/j.indcrop.2024.118064.
Šenkyřík JB, Křivánková T, Kaczorová D, Štefelová N. Investigation of the effect of the auxin antagonist PEO-IAA on cannabinoid gene expression and content in Cannabis sativa L. plants under in vitro conditions. Plants. 2023; 12(8): 1-17. Doi: 10.3390/plants12081664.
Hahm S, Lee B, Bok G, Kim S, Park J. Diniconazole promotes the yield of female hemp (Cannabis sativa) inflorescence and cannabinoids in a vertical farming system. Agronomy. 2023; 13(6): 1-13. Doi: 10.3390/agronomy13061497.
Monthony AS, Ledeuil M, Torkamaneh D. Ethylene sensitivity assay for medicinal and fiber-type Cannabis seedlings reveals a triple-response-like phenotype. BioRxiv. 2024: 1-25. Doi: 10.1101/2024.08.28.610146.
Gautam H, Sehar Z, Khan NA. Ethylene: a gaseous signaling molecule with diverse roles. In *The Plant Hormone Ethylene.* Academic Press. 2023: 1-13. Doi: 10.1016/B978-0-323-85846-5.00006-0.
Lyu D, Backer R, Berrué F, Martinez-Farina C, Hui JP, Smith DL. Plant growth-promoting rhizobacteria (PGPR) with microbial growth broth improve biomass and secondary metabolite accumulation of Cannabis sativa L. J. Agric. Food Chem. 2023; 71(19): 7268-7277. Doi: 10.1021/acs.jafc.2c06961.
Pagnani G, Pellegrini M, Galieni A, D’Egidio S, Matteucci F, Ricci A, Stagnari F, Sergi M, Lo Sterzo CL, Pisante M, Del Gallo M. Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’ cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Ind. Crops Prod. 2018; 123: 75−83. Doi: 10.1016/j.indcrop.2018.06.033.
Fan D, Schwinghamer T, Smith DL. Isolation and diversity of culturable rhizobacteria associated with economically important crops and uncultivated plants in Québec, Canada. Sys. Appl. Microbiol. 2018; 41(6): 629-640. Doi: 10.1016/j.syapm.2018.06.004.
Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbiol. 2018: 1-25. Doi: 10.3389/fmicb.2018.01606.
Ma J, Gu Y, Xu P. Biosynthesis of cannabinoid precursor olivetolic acid by overcoming rate-limiting steps in genetically engineered Yarrowia lipolytica. BioRxiv. 2021: 1-21. Doi: 10.1101/2021.06.10.447928.
Awwad F, Fantino EI, Héneault M, Diaz-Garza AM, Merindol N, Custeau A, Gélinas SE, Meddeb-Mouelhi F, Li J, Lemay JF, Karas BJ. Bioengineering of the marine diatom *Phaeodactylum tricornutum* with Cannabis genes enables the production of the cannabinoid precursor, olivetolic acid. Int. J. Mol. Sci. 2023; 24(23): 1-36. Doi: 10.3390/ijms242316624.
Yang X, Liang W, Lin X, Zhao M, Zhang Q, Tao Y, Huang J, Ke C. Efficient *Escherichia coli* platform for cannabinoid precursor olivetolic acid biosynthesis from inexpensive inputs. J. Agric. Food Chem. 2025; 172(4). Doi: 10.1021/acs.jafc.4c11867.
Srivastava S, Srivastava AK. Effect of elicitors and precursors on azadirachtin production in hairy root culture of *Azadirachta indica.* Appl. Biochem. Biotechnol. 2014; 172: 2286-2297. Doi: 10.1007/s12010-013-0664-6.
De Prato L, Ansari O, Hardy GESJ, Howieson J, O'Hara G, Ruthrof KX. The cannabinoid profile and growth of hemp (*Cannabis sativa* L.) is influenced by tropical daylengths and temperatures, genotype and nitrogen nutrition. Ind. Crops Prod. 2022; 178: 1-13. Doi: 10.1016/j.indcrop.2022.114605.
Tahir MN, Shahbazi F, Rondeau-Gagné S, Trant JF. The biosynthesis of the cannabinoids. J. Cannabis Res. 2021; 3: 1-12. Doi: 10.1186/s42238-021-00062-4.
Brousseau VD, Wu BS, MacPherson S, Morello V, Lefsrud M. Cannabinoids and terpenes: how production of photo-protectants can be manipulated to enhance *Cannabis sativa* L. phytochemistry. Front. Plant Sci. 2021; 12: 1-13. Doi: 10.3389/fpls.2021.620021.
ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A. Phytochemistry of *Cannabis sativa* L. *Phytocannabinoids: Unraveling the Complex Chemistry and Pharmacology of Cannabis sativa.* 2017: 1-36.
Aizpurua-Olaizola O, Soydaner U, Öztürk E, Schibano D, Simsir Y, Navarro P, Etxebarria N, Usobiaga A. Evolution of the cannabinoid and terpene content during the growth of *Cannabis sativa* plants from different chemotypes. J. Nat. Prod. 2016; 79(2): 324-331. Doi: 10.1021/acs.jnatprod.5b00949.


