Anopheles gambiae Control and Antibacterial Activities of Silver, Gold, and their Alloy Nanoparticles Synthesized Using Pleurotus ostreatus
DOI:
https://doi.org/10.26538/tjnpr/v9i10.62Keywords:
Thrombolytic effect, Antibacterial activity, Mosquito control, Pleurotus ostreatus, NanoparticlesAbstract
Mosquitoes, the primary malaria vectors in Nigeria, have developed increasing resistance to synthetic insecticides, necessitating the search for eco-friendly alternatives. This study investigates the insecticidal and biomedical properties of silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), and silver-gold alloy nanoparticles (Ag-AuNPs) synthesized via a green method using Pleurotus ostreatus extracts. Nanoparticles were characterized using UV-visible spectroscopy and Fourier-transform infrared spectroscopy (FTIR). Their larvicidal and pupicidal efficacy was tested at 1–30 µg/mL concentrations over 12 and 24 hours, while adult mosquitoes were exposed to nanoparticle-infused coil fumes. Additionally, antibacterial activity against eight clinical bacterial isolates was evaluated. UV-visible spectroscopy showed maximum absorbance at 430, 550, and 540 nm for AgNPs, AuNPs, and Ag-AuNPs, respectively, while FTIR analysis confirmed functional group interactions at 3778, 3262, and 3037 cm¹. Mortality increased with concentration and exposure time, with a maximum effect at 170 µg/mL for adult mosquitoes. Antibacterial tests revealed inhibition zones of 5–12 mm at 10–50 µg/mL concentrations. These findings highlight the potential of Pleurotus ostreatus-derived nanoparticles as effective biopesticides with promising antibacterial applications.
References
1.Nebbak A, Dabiré KR, Namountougou M, Sawadogo PS, Kientega M, Millogo AA, Baldet T. Study on the impact of insecticide resistance on mosquito vector control in sub-Saharan Africa. J. Vector Borne Dis. 2022; 59(2): 89–103.
2.Paton NI, Faiz MA, Karunajeewa HA, Von Seidlein L, Greenwood BM, White NJ. Challenges of antimalarial drug resistance and implications for treatment and control. Lancet Infect. Dis. 2022: 22(4): 345–359.
3.William T, Pinto J. The life cycle of mosquitoes and implications for control strategies. Parasit. Vect. 2012; 5: 45–52.
4.Nadjm B, Behrens RH. Severe malaria: Pathophysiology and treatment. Clin. Infect. Dis. 2012: 54(2): 169–174.
5.Piska K, Chmelova D, Dobranska G, Plachy V. Nutritional value and health benefits of Pleurotus ostreatus. Food Chem. 2016; 194: 1056–1062.
6.Patel Y, Naraian R, Singh VK. Medicinal properties of Pleurotus species (Oyster mushroom): A review. World J. Fungal Res. 2012; 8(3): 171–179.
7.Waktola Z, Temesgen D. Nutraceutical and medicinal values of mushrooms: A review. Int. J. Med. Mushr. 2020; 22(8): 781–795.
8.Siddiqi KS, Husen A. Green synthesis of noble metal nanoparticles using plant extracts. Environ. Nanotechnol. Monit. Manag. 2016; 5: 27–35.
9.Yallappa S, Manjanna J, Dhananjaya BL, Satyanarayan ND, Vishwanatha R, Singh BP, Adil S. Phytosynthesis of stable Au, Ag, and Au–Ag alloy nanoparticles using Jatropha gossypifolia leaf extract and their biological activities. Mater. Sci. Eng. C. 2015; 56: 264–271. Doi: 10.1016/j.msec.2015.06.032
10.Adebayo EA, Elkanah FA, Afolabi FJ, Ogundun OS, Alabi TF, Oduoye OT. Molecular characterization of most cultivated Pleurotus species in sub-western region Nigeria with development of cost effective cultivation protocol on palm oil waste. Heliy. 2021; 7: e06215. Doi: 10.1016/j.heliyon.2021.e06215.
11.Rosyida VT, Hayati SN, Wiyono T, Darsih C, Ratih D. Effect of aqueous extraction method on total water-soluble polysaccharides content and phytochemical properties of white oyster mushroom (Pleurotus ostreatus). IOP Conf. Ser.: Earth Environ. Sci. 2024; 1377(1): 012064. Doi: 10.1088/1755-1315/1377/1/012064
12.Chaturvedi VK, Yadav N, Rai NK, Ellah NHA, Bohara RA, Rehan IF, Marraiki N, Batiha GE.-S, Hetta HF, Singh MP. Pleurotus sajor-caju-mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: A new era of herbonanoceutics. Mol. 2020; 25(13): 3091. Doi: 10.3390/molecules25133091
13.Balogun HA, Ajala OO. Effect of phytochemical components of the leaf of Moringa oleifera on the development of Anopheles gambiae. Trop. J. Phytochem. Pharm. Sci. 2018; 3(6): 6471. Doi: 10.26538/tjpps/v3i6.2
14.Abbott W S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925; 18(2): 265–267. Doi: 10.1093/jee/18.2.265a
15.Zavala-Zapata V, Ramírez-Barrón SN, Sánchez-Borja M, Aguirre-Uribe LA, Delgado-Ortiz JC, Sánchez-Peña SR, Mayo-Hernández J, García-López JI, Vargas-Tovar JA, Hernández-Juárez A. Insecticide efficacy of green synthesis silver nanoparticles on Diaphorina citri Kuwayama (Hemiptera: Liviidae). Insects. 2024; 15(7): 469.Doi: 10.3390/insects15070469
16.Shakouie S, Milani S, Eskandarnejad M, Rahimi S, Froughreyhani M, Galedar R, Ranjbar M. Antimicrobial activity of tetraacetylethylenediamine-sodium perborate versus sodium hypochlorite against Enterococcus faecalis. J. Dent. Res. Dent. Clin. Dent. Prosp. 2016; 10: 43–47. Doi: 10.15171/joddd.2015.007
17.Kuppan P, Munusamy C, Manimegalai S. Synthesis and characterization of silver and gold nanoparticles using the mushroom Pleurotus ostreatus. J. Nanosci. Nanotechnol. 2015; 15(4): 2219–2226.
18.Lateef A, Ojo SA, Akinola PO. Green synthesis and pupicidal activities of alloy nanoparticles. Parasitol. Int. 2016; 65(4): 340–345.
19.Priyadarshini E, Pradhan N, Mandal A. Biosynthesis of silver nanoparticles using Pleurotus ostreatus extract. Nanomed. J. 2013; 9(1): 24–35.
20.Kumari M, Pandey S, Pandey A. Biosynthesis and characterization of silver nanoparticles using Pleurotus ostreatus extract. Mater. Sci. Eng. 2015; 51: 501–509.
21.Lateef A, Ojo SA, Akinola PO. Green synthesis and larvicidal activities of silver nanoparticles. Biochem. Res. Int. 2015; 206731. Doi: 10.1155/2015/206731
22.Musbau A, Lateef A, Ojo S. Larvicidal activities of biosynthesized nanoparticles against Anopheles larvae. Biotechnol. Rep. 2016. 12(3): 101–109.
23.Suresh A, Kumar P, Mukherjee A. Nanoparticles for mosquito vector control. Environ. Nanotechnol. Monit. Manag. 2018; 10: 256–270.
24.Badawy AM, Lotfy IM, El-Sherif HM. Green synthesis of silver nanoparticles and their application as antimicrobial agents. J. Nanomater. 2021; 439528. Doi: 10.1155/2021/439528
25.Benelli G, Mehlhorn H, Desneux N. Mosquito control with nanoparticle-based products: Present status and future perspectives. Parasitol. Res. 2017;116: 325–335. Doi: 10.1007/s00436-016-5296-0
26.Hassan H, Mokhtar N, Ibrahim A. Pupicidal activity of biosynthesized nanoparticles against Anopheles gambiae. J. Mosq. Res. 2021; 5(1): 12–20.
27.Awad MA, Al-Qurashi AD, Alshawi SK, Said EA. Synthesis and characterization of silver nanoparticles for the control of mosquito-borne diseases. J. Nanobiotechnol. 2022; 20(1): 23. Doi: 10.1186/s12951-022-01259-1
28. Manimegalai S, Rajendran R, Kannan N. Silver nanoparticles in larvicidal applications: A review. J. Parasit. Dis. 2020; 44(1): 15–21.
29.Haldar P, Chakraborty D, Bhattacharjee S. Evaluation of fume effect on adult mosquitoes using silver nanoparticles. J. Med. Entomol. 2014; 51(4): 808–814.
30.Adebayo EA, Martinez-Carrera D, Morales P, Sobal M, Escudero H, Menesses ME, Avila-Nava A, Castillo I, Bonilla A. Comparative study of antioxidant and antimicrobial properties of edible mushrooms, Pleurotus levis, P. ostreatus, P. pulmonarius, and P. tuber- regium. Int. J. Food Sci. Technol. 2018; 53; 1316–1330. Doi: 10.1111/ijfs.13723
31.Jain D, Daima HK, Kachhwaha S, Kothari SL. Synthesis of plant-mediated silver nanoparticles and their applications: A review. J. Nanomed. Nanotechnol. 2015; 6(2): 285–298.
32.Adebayo EA, Abel MO, Oke A, Lateef A, Abayomi A, Oyatokun OD, Abisoye IP, Adiji DO, Fagbenro TV, Amusan BJA, Asafa TB, Beukes LS, Gueguim-Kana EB, Abbas SH. Biosynthesis of silver, gold, and silver-gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties. Nanotechnol. Environ. Eng. 2019a; Doi: 10.1007/s41204-019-0060-8
33.Adebayo EA, Ibikunle JB, Abel MO, Lateef A, Musbau AA, Adeboye OO, Ajala VA, Olowoporoku TB, Okunlola OC, Ogundele OA, Badmus AB, Asafa TB, Beukes LS, Gueguim-Kana EB, Abbas SH. Antimicrobial and antioxidant activity of silver, gold, and silver-gold alloy nanoparticles photosynthesized using the extract of Opuntia ficus- indica. Res. Adv. Mater. Sci. 2019b; Doi: 10.1515/rams-2019-0039
34.Haldar P, Chakraborty D, Bhattacharjee S. Evaluation of fume effect on adult mosquitoes using silver nanoparticles. J. Med. Entomol. 2014; 51(4): 808–814.
35.Adebayo EA, Martinez-Carrera D, Morales P, Sobal M, Escudero H, Menesses ME, Avila-Nava A, Castillo I, Bonilla A. Comparative study of antioxidant and antimicrobial properties of edible mushrooms, Pleurotus levis, P. ostreatus, P. pulmonarius, and P. tuber- regium. Int. J. Food Sci. Technol. 2018; 53; 1316–1330. Doi: 10.1111/ijfs.13723
36.Jain D, Daima HK, Kachhwaha S, Kothari SL. Synthesis of plant-mediated silver nanoparticles and their applications: A review. J. Nanomed. Nanotechnol. 2015; 6(2): 285–298.
37.Adebayo EA, Abel MO, Oke A, Lateef A, Abayomi A, Oyatokun OD, Abisoye IP, Adiji DO, Fagbenro TV, Amusan BJA, Asafa TB, Beukes LS, Gueguim-Kana EB, Abbas SH. Biosynthesis of silver, gold, and silver-gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties. Nanotechnol. Environ. Eng. 2019a; Doi: 10.1007/s41204-019-0060-8
38.Adebayo EA, Ibikunle JB, Abel MO, Lateef A, Musbau AA, Adeboye OO, Ajala VA, Olowoporoku TB, Okunlola OC, Ogundele OA, Badmus AB, Asafa TB, Beukes LS, Gueguim-Kana EB, Abbas SH. Antimicrobial and antioxidant activity of silver, gold, and silver-gold alloy nanoparticles photosynthesized using the extract of Opuntia ficus- indica. Res. Adv. Mater. Sci. 2019b; Doi: 10.1515/rams-2019-0039
Published
Issue
Section
License
Copyright (c) 2025 Tropical Journal of Natural Product Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.





