A Review, Inventory Structural Aspects of Phytochemical Compounds in Hawthorn Plant and Highlighting their Properties: Towards Standardization and Authentication

Main Article Content

Najoua Soulo
Iliass Lahmass
Nor El houda Tahir
Badiaa Lyoussi
Zineb Benziane-Ouaritini

Abstract

In phytotherapy, Crataegus (hawthorn) is one of the most remarkable medicinal plants. Recently, it has gained attention for treating diseases mostly affecting the cardiovascular system. The pharmacologically active metabolites that give Crataegus its activity are flavonoids, specifically hyperoside, vitexin, and rutin, according to reports. Consequently, the amounts of these active metabolites in phytopharmaceuticals meant to be made from Crataegus species are standardized in accordance with those specified by the official pharmacopeias. Scientific databases were the source of the knowledge about hawthorn that was available. The information gathered is summarized in this publication together with information on traditional applications, phytochemistry, pharmacology, and concerns. As indicated by the literature review, Crataegus is a polyphyletic genus comprising approximately 3300 species, as demonstrated by phylogenetic and morphological studies. A total of 249 phytochemical compounds have been identified within this genus. These include flavonoids, lignans, fatty acids, organic acids, monoterpenoids, sesquiterpenoids, terpenoids, and steroids, all of which are present in hawthorn. Correlative research on its pharmacological properties and traditional applications is currently lacking. Furthermore, several varieties of hawthorn with traditional uses have not yet been the subject of phytochemical and pharmacological investigation. Consequently, a thorough investigation of the genus Crataegus is essential.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

A Review, Inventory Structural Aspects of Phytochemical Compounds in Hawthorn Plant and Highlighting their Properties: Towards Standardization and Authentication. (2025). Tropical Journal of Natural Product Research , 9(10), 4670-4687. https://doi.org/10.26538/tjnpr/v9i10.1

References

1. Shikov AN, Pozharitskaya ON, Makarov VG, Wagner H, Verpoorte R, Heinrich M. Medicinal plants of the Russian Pharmacopoeia; their history and applications. J Ethnopharmacol. 2014; 154:481–536. Doi: 10.1016/j.jep.2014.04.007

2. Garcia Oliveira P, Fraga Corral M, Pereira AG, Lourenço Lopes C, Jimenez Lopez C, Prieto MA, Simal Gandara J. Scientific basis for the industrialization of traditionally used plants of the Rosaceae family. Food Chem. 2020; 330:127197. Doi: 10.1016/j.foodchem.2020.127197

3. Shirzadi-Ahodashti M, Mortazavi-Derazkola S, Ebrahimzadeh MA. Biosynthesis of noble metal nanoparticles using Crataegus monogyna leaf extract (CML@X-NPs, X= Ag, Au): Antibacterial and cytotoxic activities against breast and gastric cancer cell lines. Surf Interfaces. 2020; 21:100697. Doi: 10.1016/j.surfin.2020.100697

4. M IA, V MA, K J. Taxonomy of the wild species of genus Crataegus (Rosaceae): An updated review for the flora of Nakhchivan Autonomous Republic (Azerbaijan). Biosyst Divers. 2020; 28:445–454. Doi: 10.15421/012057

5. Tlemcani S, Lahkimi A, Hmamou A, Slighoua M, Moussaoui F, Bekkari H. In vivo evaluation of analgesic, anti-inflammatory, antidepressant and cytotoxic potential of Moroccan Salvia verbenaca L. extracts. Trop J Nat Prod Res. 2025; 9:2426–2433. Doi: 10.26538/tjnpr/v9i6.11

6. Tunç Y, Yaman M, Yılmaz KU, Khadivi A, Goodarzi S. Elucidation of genetic diversity in hawthorn (Crataegus azarolus L.) accessions naturally growing in the Eastern Mediterranean region of Türkiye using morphological, pomological, and inter simple sequence repeat markers. BMC Plant Biol. 2025; 25:43. Doi: 10.1186/s12870-025-04157-3

7. Bekbolatova E, Kukula-Koch W, Baj T, Stasiak N, Ibadullayeva G, Koch W, Głowniak K, Tulemissov S, Sakipova Z, Boylan F. Phenolic composition and antioxidant potential of different organs of Kazakh Crataegus almaatensis Pojark: A comparison with the European Crataegus oxyacantha L. flowers. Open Chem. 2018; 16 :415–426. Doi: 10.1515/chem-2018-0048

8. Albarouki E, Peterson A. Molecular and morphological characterization of Crataegus L. species (Rosaceae) in southern Syria. Bot J Linn Soc. 2007; 153:255–263. Doi: 10.1111/j.1095-8339.2007. 00607.x

9. Ornelas-Lim C, Luna-Vázquez FJ, Rojas-Molina A, Ibarra-Alvarado C. Development of a quantified herbal extract of hawthorn Crataegus mexicana leaves with vasodilator effect. Saudi Pharm J. 2021; 29 :1258–1266. Doi: 10.1016/j.jsps.2021.10.002

10. Kwok CY, Chan K, Wang Y, Chen X. Consumption of dried fruit of Crataegus pinnatifida (hawthorn) suppresses high-cholesterol diet-induced hypercholesterolemia in rats. J Funct Foods. 2010; 2:179–186. Doi: 10.1016/j.jff.2010.04.006

11. Agiel N, Hanoglu DY, Hanoglu A, Baser KHC, Mericli F. Volatile oil constituents of Crataegus azarolus L. and Crataegus pallasii Grisb. Rec Nat Prod. 2019; 13:405–412. Doi: 10.25135/rnp.123.18.11.1060

12. Simirgiotis MJ. Antioxidant capacity and HPLC-DAD-MS profiling of Chilean Peumo (Cryptocarya alba) fruits and comparison with German Peumo (Crataegus monogyna) from Southern Chile. Molecules. 2013; 18:2061–2080. Doi: 10.3390/molecules18022061

13. Aly H, Mahmoud S, El-Bakry AA. Polymorphism in leaf metabolites in three different populations of Crataegus sinaica from South Sinai, Egypt. Notulae Scientia Biologicae. 2025; 17(1):12124. Doi: 10.55779/nsb17112124

14. El Aboui FZ, Lahmass M, Ghabbour I, Laghmari M, Benali T, Khabbach A, Hammani K. Ethnomedical insights into plants used by tribes in the Rif of Al Hoceima and in the Pre-Rif of Taza (two provinces in Northern Morocco). Ethnobotany Research and Applications. 2025; 30:1–37. Doi: 10.32859/era.30.23.1-37

15. Shortle E, Kerry J, Furey A, Gilroy D. Optimisation of process variables for antioxidant components from Crataegus monogyna by supercritical fluid extraction (CO₂) using Box–Behnken experimental design. J Supercrit Fluids. 2013 ; 81 :112–118. Doi : 10.1016/j.supflu.2013.05.007

16. Abuashwashi MA, Palomino OM, Gómez-Serranillos MP. Geographic origin influences the phenolic composition and antioxidant potential of wild Crataegus monogyna from Spain. Pharm Biol. 2016; 54(11):2708–2713. Doi: 10.1080/13880209.2016.1179769

17. Wu J, Peng W, Qin R, Zhou H. Crataegus pinnatifida: Chemical Constituents, Pharmacology, and Potential Applications. Molecules. 2014; 19(2):1685–1712. Doi: 10.3390/molecules19021685

18. Shortle E, O’Grady MN, Gilroy D, Furey A, Quinn N, Kerry JP. Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates. Meat Sci. 2014; 98:828–834. Doi: 10.1016/j.meatsci.2014.07.001

19. Bujor A, Pop RM, Miron A, Vlase L. Vasorelaxant effects of Crataegus pentagyna: Links with arginase inhibition and phenolic profile. J Ethnopharmacol. 2020; 252 :112559. Doi: 10.1016/j.jep.2019.112559

20. Kazemi E, Mansoursamaei A, Bijan M, Hosseinzadeh A, Namavar H, Masroor MJ, Sheibani H. Effect of Crataegus oxyacantha on high blood pressure: A randomized singleblind controlled trial. Adv Integr Med. 2024. Doi: 10.1016/j.aimed.2024.09.007

21. Kotsou K, Magopoulou D, Chatzimitakos T, Athanasiadis V, Bozinou E, Sfougaris AI, Lalas SI. Enhancing the nutritional profile of Crataegus monogyna fruits by optimizing the extraction conditions. Horticulturae. 2024; 10:564. Doi: 10.3390/horticulturae10060564

22. Lund JA, Brown PN, Shipley PR. Differentiation of Crataegus spp. guided by nuclear magnetic resonance spectrometry with chemometric analyses. Phytochemistry. 2017; 141:11–19. Doi: 10.1016/j.phytochem.2017.05.003

23. Venskutonis PR. Phytochemical composition and bioactivities of hawthorn (Crataegus spp.): review of recent research advances. J Food Bioact. 2018; 4:69–87. Doi: 10.31665/JFB.2018.4163

24. BadalicaPetrescu M, Dragan S, Ranga F, Fetea F, Socaciu C. Comparative HPLCDADESI (+) MS fingerprint and quantification of phenolic and flavonoid composition of aqueous leaf extracts of Cornus mas and Crataegus monogyna, in relation to their cardiotonic potential. Notul Bot Horti Agrobo. 2014; 42:9–18. Doi: 10.15835/nbha4219270

25. Sahu S, Kumari D, Kusam K, Kuila A, Gurjar RS, Sharma K, Verma R. Deep eutectic solvent extraction of polyphenol from plant materials: current status and future prospects in food applications. Food Chem. 2025; 482:144125. Doi: 10.1016/j.foodchem.2025.144125

26. Nazhand A, Lucarini M, Durazzo A, Zaccardelli M, Cristarella S, Souto SB, Silva AM, Severino P, Souto EB, Santini A. Hawthorn (Crataegus spp.): An Updated Overview on Its Beneficial Properties. Forests. 2020; 11:564. Doi: 10.3390/f11050564

27. Cui Q, Du R, Liu M, Rong L. Lignans and their derivatives from plants as antivirals. Molecules. 2020; 25:183. Doi: 10.3390/molecules25010183

28. Barker D. Lignans. Molecules. 2019; 24:1424. Doi: 10.3390/molecules24071424

29. Oluwole O, Fernando B, Lumanlan J, Ademuyiwa O, Jayasena V. Role of phenolic acid, tannins, stilbenes, lignans and flavonoids in human health – a review. Int J Food Sci Technol. 2022; 57:6326–6335. Doi: 10.1111/ijfs.15936

30. Soleymani S, Habtemariam S, Rahimi R, Nabavi SM. The what and who of dietary lignans in human health: Special focus on prooxidant and antioxidant effects. Trends Food Sci Technol. 2020; 106:382–390. Doi: 10.1016/j.tifs.2020.10.015

31. Li Y, Xie S, Ying J, Wei W, Gao K. Chemical structures of lignans and neolignans isolated from Lauraceae. Molecules. 2018; 23:3164. Doi: 10.3390/molecules23123164

32. Skalski B, Kuźniak E, Kowalska I, Sikora M, Olas B. A review of the biological activity and structure property relationships of the main compounds from Schisandra chinensis. Nutrients. 2025; 17:436. Doi: 10.3390/nu17020436

33. Cui M, Cheng L, Zhou Z, Zhu Z, Liu Y, Li C, Liao B, Fan M, Duan B. Traditional uses, phytochemistry, pharmacology, and safety concerns of hawthorn (Crataegus genus): A comprehensive review. J Ethnopharmacol. 2024; 319:117229. Doi: 10.1016/j.jep.2024.117229

34. Cheng R, Yang S, Wang D, Qin F, Wang S, Meng S. Advances in the biosynthesis of plant terpenoids: Models, mechanisms, and applications. Plants. 2025; 14 :1428. Doi: 10.3390/plants14071428

35. Karlova R, Ruyter-Spira C, Bouwmeester HJ, de Vos RCH. Detoxification of monoterpenes by a family of plant glycosyltransferases. Phytochemistry. 2022; 203:113371. Doi: 10.1016/j.phytochem.2022.113371

36. Paulino BN, Silva GNS, Araújo FF, Néri-Numa IA, Pastore GM, Bicas JL, Molina G. Beyond natural aromas: the bioactive and technological potential of monoterpenes. Trends Food Sci Technol. 2022; 128:188–201. Doi: 10.1016/j.tifs.2022.08.006

37. Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon. 2024;10: e39120. Doi: 10.1016/j.heliyon. 2024.e39120

38. Cui M, Cheng L, Zhou Z, Zhu Z, Liu Y, Li C, Liao B, Fan M, Duan B. Traditional uses, phytochemistry, pharmacology, and safety concerns of hawthorn (Crataegus genus): a comprehensive review. J Ethnopharmacol. 2024; 319:117229. Doi: 10.1016/j.jep.2023.117229

39. Vicente Zurdo D, Gómez Mejía E, Morante Zarcero S, Rosales Conrado N, Sierra I. Analytical strategies for green extraction, characterization, and bioactive evaluation of polyphenols, tocopherols, carotenoids, and fatty acids in agri food bio residues. Molecules. 2025; 30:1326. Doi: 10.3390/molecules30061326

40. Xie J, Wang W, Dong C, Huang L, Wang H, Li C, Nie S, Xie M. Protective effect of flavonoids from Cyclocarya paliurus leaves against carbon tetrachloride induced acute liver injury in mice. Food Chem Toxicol. 2018; 119:392–399. Doi: 10.1016/j.fct.2018.01.016

41. Azadnasab R, Kalantar H, Khorsandi L, Kalantari H, Khodayar MJ. Epicatechin ameliorative effects on methotrexate-induced hepatotoxicity in mice. Hum Exp Toxicol. 2021;40(Suppl). Doi: 10.1177/0960327 1211010789

42. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022; 383:132531. Doi: 10.1016/j.foodchem.2022.132531

43. Mohamed EK, Fathy MM, Sadek NA, Eldosoki DE, Khedre E. The effects of rutin coat on the biodistribution and toxicities of iron oxide nanoparticles in rats. J Nanopart Res. 2024; 26:49. Doi: 10.1007/s11051-024-05789-3

44. Iova GM, Calniceanu H, Popa A, Szuhanek CA, Marcu O, Ciavoi G, Scrobota I. The antioxidant effect of curcumin and rutin on oxidative stress biomarkers in experimentally induced periodontitis in hyperglycemic Wistar rats. Molecules. 2021; 26:1332. Doi: 10.3390/molecules26051332

45. Zaragozá C, Villaescusa L, Monserrat J, Zaragozá F, Álvarez-Mon M. Potential therapeutic anti-inflammatory and immunomodulatory effects of dihydroflavones, flavones, and flavonols. Molecules. 2020; 25:1017. Doi: 10.3390/molecules25051017

46. Murray MT. Crataegus oxyacantha (Hawthorn). In: Textbook of Natural Medicine. Elsevier; 2020. p. 544–547.e1. Doi :10.1016/B978-0-323-43044-9.00071-6.

47. Shen, B., Wu, H., Xie, X., Zhao, B., Chen, P., Ao, D., Pan, H. & Lin, B. Comparative transcriptomic analyses of anthocyanin biosynthesis genes in eggplant under low temperature and weak light. Plants 2025; 14:478. DOI: 10.3390/PLANTS14030478

48. Acharya Balkrishna, Agarwal U., Arya D., Chaudhary S., Arya V. From tradition to evidence: exploring the neurochemical basis of medicinal plants in anxiety therapy. World J. Biol. Psychiatry 2025; 26(1):1–38. DOI: 10.1080/15622975.2025.40658542

49. Chu W, Gao P, Li L. Chemical constituents from the leaves of Crataegus pinnatifida Bge. Biochem Syst Ecol. 2019; 86:103923. Doi: 10.1016/j.bse.2019.103923

50. Laaroussi H, Ferreira-Santos P, Genisheva Z, Bakour M, Ousaaid D, Teixeira JA, Lyoussi B. Unraveling the chemical composition, antioxidant, α-amylase and α-glucosidase inhibition of Moroccan propolis. Food Biosci. 2021; 42:101160. Doi: 10.1016/j.fbio.2021.101160

51. Mraihi F, Journi M, Chérif JK, Sokmen M, Sokmen A, Trabelsi-Ayadi M. Phenolic contents and antioxidant potential of Crataegus fruits grown in Tunisia as determined by DPPH, FRAP, and β-carotene/linoleic acid assay. J Chem. 2013; 2013:378264. Doi: 10.1155/2013/378264

52. Seğmenoğlu MS, Çenet M. Biochemical properties of Crataegus monogyna Jacq. fruit extract and effect on the A549 lung cancer cell line. Kuwait J Sci. 2023; 100146. Doi: 10.48129/kjs. v50i2.13249

53. Martinelli F, Zanoni G, Ruzza P, Tava A, Novello E, Pino A, Todeschini V. Botanical, phytochemical, anti-microbial and pharmaceutical characteristics of hawthorn (Crataegus monogyna Jacq.), Rosaceae. Molecules. 2021 ; 26 :7266. Doi : 10.3390/molecules26237266

54. Edwards JE, Brown PN, Talent N, Dickinson TA, Shipley PR. A review of the chemistry of the genus Crataegus. Phytochemistry. 2012; 79:5–26. Doi: 10.1016/j.phytochem.2012.03.014

55. Cosmulescu SN, Trandafir I, Scrieciu F, Stoenescu AM. Content in organic acids of Mespilus spp. and Crataegus spp. genotypes. Not Bot Horti Agrobot Cluj-Na. 2020; 48:171–176. Doi: 10.15835/nbha48111892

56. Al-Mazaideh GM, Al-Gharaibeh A, Alzoubi K, Alshaer D. Phytochemical composition and bioactivities of Crataegus aronia as antioxidant, antibacterial and antioxidative stress in red blood cells Is it a window of hope for children with glucose-6-phosphate dehydrogenase deficiency. Heliyon. 2022; 8: e11516. Doi: 10.1016/j.heliyon. 2022.e11516

57. Nam SM, Kang IJ, Shin MH. Antidiabetic and antioxidative activities of extracts from Crataegus pinnatifida. J East Asian Soc Diet Life. 2015; 25:270–277. Doi: 10.6116/JEA.2015.25.270

58. Al-Mobideen OK, Alqudah AA, Al-Mustafa A, Alhawarat F, Mizher H. Effect of Crataegus aronia on the biochemical parameters in induced diabetic rats. Pharmacogn J. 2022; 14:587–595. Doi: 10.5530/pj.2022.14.140

59. Pirmoghani A, Salehi I, Moradkhani S, Karimi SA, Salehi S. Effect of Crataegus extract supplementation on diabetes-induced memory deficits and serum biochemical parameters in male rats. IBRO Rep. 2019; 7:90–96. Doi: 10.1016/j.ibror.2019.10.004

60. Lien HM, Lin HT, Huang SH, Chen YR, Huang CL, Chen CC, Chyau CC. Protective effect of hawthorn fruit extract against high fructose-induced oxidative stress and endoplasmic reticulum stress in pancreatic β-cells. Foods. 2023; 12:1130. Doi:10.3390/foods12051130

61. Gheitasi I, Savari F, Akbari G, Mohammadi J, Fallahzadeh AR, Sadeghi H. Molecular mechanisms of hawthorn extracts in multiple organs disorders in underlying of diabetes: A review. Int J Endocrinol. 2022; 2022:2002768. Doi:10.1155/2022/2002768

62. Radi FZ, Bencheikh N, Bouhrim M, Saleh A, Al Kamaly O, Parvez MK, Elbouzidi A, Bnouham M, Zair T. Phytochemical analysis, antioxidant, and antihyperglycemic activities of Crataegus monogyna Jacq aqueous extract. J Evid Based Integr Med. 2023; 28:2002768. Doi:10.1177/1934578X231195157

63. Dehghani, S., Mehri, S., Hosseinzadeh, H. The effects of Crataegus pinnatifida (Chinese hawthorn) on metabolic syndrome: A review. Iran J Basic Med Sci. 2019, 22, 460–468. Doi: 10.22038/IJBMS.2019.31964.7678

64. Kumar, D., Arya, V., Bhat, Z. A., Khan, N. A., Prasad, D. N. The genus Crataegus: chemical and pharmacological perspectives. Rev Bras Farmacogn. 2012, 22, 1187–1200. Doi:10.1590/S0102-695X2012005000022

65. Amrati, E. Z., Mssillou, I., Boukhira, S., Djiddi Bichara, M., El Abdali, Y., Galvão de Azevedo, R., Mohamed, C., Slighoua, M., Conte, R., Kiokias, S., Soares Pontes, G., Bousta, D. Phenolic composition of Crataegus monogyna Jacq. extract and its anti-inflammatory, hepatoprotective, and antileukemia effects. Pharmaceuticals 2024, 17, 786. Doi:10.3390/ph17070786

66. Bujor, A., Miron, A., Luca, S. V., Skalicka-Wozniak, K., Silion, M., Trifan, A., Girard, C., Demougeot, C., Totoson, P. Vasorelaxant effects of Crataegus pentagyna: Links with arginase inhibition and phenolic profile. J. Ethnopharmacol. 2020, 252, 112559. Doi: 10.1016/j.jep.2019.112559

67. Tong, Y., Liu, S., Gong, R., Zhong, L., Duan, X., Zhu, Y. Ethyl vanillin protects against kidney injury in diabetic nephropathy via oxidative stress and apoptosis inhibition. Oxid. Med. Cell. Longev. 2019, 2019, 2129350. Doi :10.1155/2019/2129350