Antibacterial activity of Gel Nanohydroxyapatite-abalone as Remineralization Agent against Lactobacillus acidophilus, Streptococcus sanguinis, and Streptococcus mutans
Main Article Content
Abstract
Dental health issues in Indonesia require urgent attention, particularly periodontal disease and tooth decay, which can lead to cavities. Dental caries are multifactorial diseases influenced by bacteria, including Streptococcus mutans, Streptococcus sanguinis, and Lactobacillus acidophilus. The application of nano hydroxyapatite (n-HA) can be used as an alternative to help remineralize tooth enamel. Mouthwash, toothpaste, gum, and gel are generally used to reduce the risk of dental caries. This study chooses gel formulation because it is easy to apply and can increase the contact time between the active ingredient and tooth enamel. This work aims to investigate the antibacterial properties of gel nano hydroxyapatite abalone (gel n-HA Abalone) with concentration variations of 20,30, and 40 %. The antibacterial analysis used the Kirby-Bauer disk diffusion method. This study analyzes the calcium/phosphate (Ca/P) molar ratio and the ability of the gel n-HA Abalone to inhibit the growth of key cariogenic bacteria. An increase in gel concentration was associated with an upward shift in the particle size distribution of the gel n-HA Abalone. Energy dispersive X-ray spectroscopy (EDS) showed that the Ca/P molar ratio of gel n-HA Abalone 40 % was 1.65, providing optimal ion availability for remineralization. Antibacterial testing revealed that the gel n-HA Abalone 40 % exhibited the most effective inhibitory activity, with inhibition zone diameters of 15.6 0.2 mm for Streptococcus mutans, 15.63 0.1 mm for Streptococcus sanguinis, and 15.27 0.3 mm for Lactobacillus acidophilus. The gel n-HA Abalone 40 % can be a natural antibacterial agent for dental caries prevention.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Theresia TT, Goenawan G, Nurifai NB. The relationship of frequency of instant food consumption and energy drinks’ consumption with prevalence of caries. Jurnal Kesehatan Gigi. 2023a; 10(1): 5–9. DOI: https://doi.org/10.31983/jkg.v10i1.9129
2. Theresia TT, Putri SL. Prevalence and potential risk factors for periodontal disease among adults aged 35-54 years in Banten. Majalah Kedokteran Gigi Indonesia. 2023b; 9 (3): 220-229. DOI: https://doi.org/10.22146/majkedgiind.81548
3. Hasan F, Yuliana LT, Budi HS, Ramasamy R, Ambiya ZI, Ghaisani, AM. Prevalence of dental caries among children in Indonesia: A systematic review and meta-analysis of observational studies. Heliyon. 2024;10(11): e32102. Doi: 10.1016/j.heliyon.2024.e32102 DOI: https://doi.org/10.1016/j.heliyon.2024.e32102
4. Spatafora G, Li Y, He X, Cowan A, Tanner, ACR. The evolving microbiome of dental caries. Microorganisms. 2024; 12 (1): 121. Doi: 10.3390/microorganisms12010121 DOI: https://doi.org/10.3390/microorganisms12010121
5. Wen ZT, Huang X, Ellepola K, Liao S, Li Y. Lactobacilli and human dental caries: more than mechanical retention. Microbiol. 2022;168 (6): 001196. Doi: 10.1099/mic.0.001196 DOI: https://doi.org/10.1099/mic.0.001196
6. Chopra A, Rao NC, Gupta N, Vashisth S, Lakhanpal M. The predisposing factors between dental caries and deviations from normal weight. North Am. J. Med. Sci. 2015; 7(4): 151–159. Doi: 10.4103/1947-2714.156011 DOI: https://doi.org/10.4103/1947-2714.156011
7. Elamin A, Garemo M, Gardner A. Dental caries and their association with socioeconomic characteristics, oral hygiene practices and eating habits among preschool children in Abu Dhabi, United Arab Emirates - the NOPLAS project. BMC Oral Health. 2018; 18:104. Doi: 10.1186/s12903-018-0557-8 DOI: https://doi.org/10.1186/s12903-018-0557-8
8. Mazurkiewicz D, Pustułka M, Ambrozik-Haba, J, Bienkiewicz M. Dietary habits and oral hygiene as determinants of the incidence and intensity of dental caries—A pilot study. Nutrients. 2023; 15 (22): 4833. Doi: 10.3390/nu15224833 DOI: https://doi.org/10.3390/nu15224833
9. Mobley C, Marshall TA, Milgrom P, Coldwell SE. The Contribution of dietary factors to dental caries and disparities in caries. Acad Pediatr. 2009; 9(6): 410–414. Doi: 10.1016/j.acap.2009.09.008 DOI: https://doi.org/10.1016/j.acap.2009.09.008
10. Khairuddin ANM, Bogale B, Kang J, Gallagher JE. Impact of dental visiting patterns on oral health: A systematic review of longitudinal studies. BDJ Open. 2024; 10:18. Doi: 10.1038/s41405-024-00195-7 DOI: https://doi.org/10.1038/s41405-024-00195-7
11. Amalina R, Ramadhanti DM, Feranisa A, Syafaat FY, Sari M, Yusuf Y. Development of hydroxyapatite Asian moon scallop (amusium pleuronectes) gel and its effect after application on tooth enamel white-spot lesion. Cakradonya Dent J. 2021; 13(2): 81-87. Doi: 10.24815/cdj.v13i2.23527 DOI: https://doi.org/10.24815/cdj.v13i2.23527
12. Sari M, Ramadhanti DM, Amalina R, Chotimah, Ana ID, Yusuf Y. Development of a hydroxyapatite nanoparticle-based gel for enamel remineralization —A physicochemical properties and cell viability assay analysis. Dent. Mater. J. 2022; 41 (1): 68–77. Doi: 10.4012/dmj.2021-102 DOI: https://doi.org/10.4012/dmj.2021-102
13. Nisa A, Sari M, Yusuf Y. Fabrication and characterization of HA-oyster shell based on biopolymer - propolis as an agent of dental enamel remineralization material. Mater. Res. Express. 2022; 9 :115401. Doi: 10.1088/2053-1591/aca31c DOI: https://doi.org/10.1088/2053-1591/aca31c
14. Pu’ad, NASM, Koshy P, Abdullah HZ, Idris MI, Lee TC. Syntheses of hydroxyapatite from natural sources. Heliyon. 2019; 5: e01588. Doi: 10.1016/j.heliyon.2019.e01588 DOI: https://doi.org/10.1016/j.heliyon.2019.e01588
15. Sari M, Hening P, Chotimah, Ana ID, Yusuf Y. Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering. Biomater. Res. 2021; 25(1): 2. Doi: 10.1186/s40824-021-00203-z DOI: https://doi.org/10.1186/s40824-021-00203-z
16. Sari M, Yusuf Y. Synthesis and characterization of hydroxyapatite based on green mussel shells (Perna viridis) with calcination temperature variation using the precipitation method. Int. J. Nanoelectron. Mater. 2018; 11: 357–370. DOI: https://doi.org/10.1088/1757-899X/432/1/012046
17. Herpandi, Hanif, I, Widiastuti, I, Sudirman, S. Hydroxyapatite characteristics from snakehead fish (Channa striata) bone via alkali treatment followed by calcination method. Trop. J. Nat. Prod. Res. 2024; 8(2): 6147–6151. Doi: 10.26538/tjnpr/v8i2.12 DOI: https://doi.org/10.26538/tjnpr/v8i2.12
18. Amalina R, Soekanto SA, Gunawan HA, Sahlan M. Analysis of CPP-ACP complex in combination with propolis to remineralize enamel. J. Int. Dent. Med. Res. 2017; 10: 814–819.
19. Balhuc S, Campian R, Labunet A, Negucioiu M, Buduru S, Kui A. Dental applications of systems based on hydroxyapatite nanoparticles—an evidence-based update. Crystal. 2021; 11(6):674. Doi: 10.3390/cryst11060674 DOI: https://doi.org/10.3390/cryst11060674
20. Pushpalatha C, Gayatri, VS, Sowmya SV, Augustine D, Alamoudi A, Zidane, B, Albar, NHM, Bhandi S. Nanohydroxyapatite in dentistry: A comprehensive review. Saudi Dent J. 2023; 35 (6): 741–752. Doi: 10.1016/j.sdentj.2023.05.018 DOI: https://doi.org/10.1016/j.sdentj.2023.05.018
21. Florea AD, Pop LC, Benea HRC, Tomoaia G, Racz CP, Mocanu A, Dobrota CT, Balint R, Soritau O, Cotisel, MT. Remineralization Induced by Biomimetic hydroxyapatite toothpastes on human enamel. Biomimetics. 2023; 8 (6): 450. Doi: 10.3390/biomimetics8060450 DOI: https://doi.org/10.3390/biomimetics8060450
22. Memarpour M, Shafiei F, Rafiee A, Soltani M, Dashti MH. Effect of hydroxyapatite nanoparticles on enamel remineralization and estimation of fissure sealant bond strength to remineralized tooth surfaces: An in vitro study. BMC Oral Health. 2019; 19:92. Doi: 10.1186/s12903-019-0785-6 DOI: https://doi.org/10.1186/s12903-019-0785-6
23. Gil-Bona A, Karaaslan H, Depalle B, Sulyanto R, Bidlack FB. Proteomic analyses discern the developmental inclusion of albumin in pig enamel: A new model for human enamel Hhypomineralization. Int. J. Mol. Sci. 2023; 24 (21): 15577. Doi: 10.3390/ijms242115577 DOI: https://doi.org/10.3390/ijms242115577
24. Golovanenko AL, Berezina ES, Tret’yakova EV, Alekseeva IV. Standardization of gel for enamel remineralization. Pharm. Chem. J. 2016; 49 (12): 843–846. Doi: 10.1007/s11094-016-1384-3 DOI: https://doi.org/10.1007/s11094-016-1384-3
25. Bayram C, Ozturk S, Karaosmanoglu B, Gultekinoglu M, Taskiran EZ, Ulubayram K, Majd H, Ahmed J, Edirisinghe M. Microfluidic fabrication of gelatin-nano hydroxyapatite scaffolds for enhanced control of pore size distribution and osteogenic differentiation of dental pulp stem cells. Macromol. Biosci. 2024; 24 (12): 2400279. Doi: 10.1002/mabi.202400279 DOI: https://doi.org/10.1002/mabi.202400279
26. Sari M, Cahyati N, Yusuf Y. Morphological properties of Poly (vinyl alcohol)/gelatin contained Indonesian carbonated hydroxyapatite abalone nanofibrous scaffold by electrospinning. Nat. life. Sci. Commun. 2024; 23 (3): e2024037. Doi: 10.12982/NLSC.2024.037 DOI: https://doi.org/10.12982/NLSC.2024.037
27. Cahyati N, Sari M, Yusuf Y. Biological and physicochemical characterization of carbonated hydroxyapatite-honeycomb-polyethylene oxide bone scaffold fabricated using the freeze-drying method. Adv. Nat Sci: Nanosci. Nanotechnol. 2024; 15 (3): 035004. Doi: 10.1088/2043-6262/ad6b7b DOI: https://doi.org/10.1088/2043-6262/ad6b7b
28. Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A. Essential oils as antimicrobial agents—myth or real alternative. Molecules. 2019; 24 (11): 2130. Doi: 10.3390/molecules24112130 DOI: https://doi.org/10.3390/molecules24112130
29. Hudzicki J. Kirby-Bauer disk diffusion susceptibility test protocol [Internet]. Washington, DC: American Society for Microbiology; 2016 [cited 2025 June 15]. Available from: https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/kirby-bauer-disk-diffusion-susceptibility-test-protocol-pdf.pdf
30. Scatolini AM, Pugine SMP, De Oliveira Vercik LC, De Melo MP, Da Silva Rigo EC. Evaluation of the antimicrobial activity and cytotoxic effect of hydroxyapatite containing Brazilian propolis. Biomed. Mater (Bristol). 2018; 13: 025010. Doi: 10.1088/1748-605X/aa9a84 DOI: https://doi.org/10.1088/1748-605X/aa9a84
31. Albaridi NA. Antibacterial potency of honey. Int. J. Microbiol. 2019 (1): 2464507. Doi: 10.1155/2019/2464507 DOI: https://doi.org/10.1155/2019/2464507
32. Sari M, Chotimah, Ana ID, Yusuf Y. Cell viability assay and surface morphology analysis of carbonated hydroxyapatite/honeycomb/titanium alloy coatings for bone implant applications. Bioengineering. 2022; 9(7): 325. Doi: 10.3390/bioengineering9070325 DOI: https://doi.org/10.3390/bioengineering9070325
33. Sherif ABAH, Barakat IF, Abdelrahim, RA. Remineralization efficiency of nanohydroxyapatite, nano-bioactive glass, and sodium fluoride on initial enamel caries of primary teeth. Al-Azhar J of Dent Sci. 2023; 26 (4): 573–581. Doi: 10.1016/j.jdent.2011.03.008. DOI: https://doi.org/10.21608/ajdsm.2022.154501.1354
34. Ramadhanti, DM, Nurhapsari, A., Rochmah, YS. Physicochemical characteristics of Asian moon scallop shells as a tooth remineralization agent. Trop J Nat Prod Res. 2025; 9(1): 183–188. Doi: 10.26538/tjnpr/v9i1.26. DOI: https://doi.org/10.26538/tjnpr/v9i1.26
35. Al Maruf MIH, Widiawati W, Rahmaidah, AV, Sari M, Yusuf Y. Antibacterial activity of carbonate hydroxyapatite-based honeycomb scaffolds doped with zinc for medical implants. Bio-Med.Mater. Eng. 2025: 1–7. Doi: 10.1177/09592989241313112 DOI: https://doi.org/10.1177/09592989241313112
36. Lamkhao S, Phaya M, Jansakun C, Chandet N, Thongkorn K, Rujijanagul G, Bangrak P, Randorn C. Synthesis of hydroxyapatite with antibacterial properties using a microwave-assisted combustion method. Sci.Rep. 2019; 9: 4015. Doi: 10.1038/s41598-019-40488-8 DOI: https://doi.org/10.1038/s41598-019-40488-8
37. Szałaj U, Chodara A, Gierlotka S, Wojnarowicz J, Łojkowski W. Enhanced Release of calcium ions from hydroxyapatite nanoparticles with an increase in their specific surface area. Materials (Basel). 2023; 16 (19): 6397. Doi: 10.3390/ma16196397 DOI: https://doi.org/10.3390/ma16196397
38. Said MM, Rehan M, El-Sheikh, SM, Zahran MK, Abdel-Aziz MS, Bechelany M, Barhoum A. Multifunctional hydroxyapatite/silver nanoparticles/cotton gauze for antimicrobial and biomedical applications. Nanomaterials. 2021; 11 (2): 429. Doi: 10.3390/nano11020429 DOI: https://doi.org/10.3390/nano11020429


