Study of the Antioxidant and Antidiabetic Properties of the Alga Halopteris Scoparia: In Vitro and In Vivo Evaluation in Alloxan-Induced Diabetic Mice

Main Article Content

Laabar Abdelmounaim
Imad Kabach
Soufiane Drioua
Bitwell Chibuye
Azzouz Krid
Ayoub El Hamri
Hicham Dahak
Hicham Bouchahta
Moulay E. Faouzi

Abstract

Halopteris scoparia is an edible brown algae seaweed with significant biological activities. This study aimed to explore the biological and toxicological activities of the methanol extract of Halopteris scoparia. The study included a comprehensive evaluation of the phytochemical composition of the extract, as well as its antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging, and Ferric reducing antioxidant power (FRAP) assays.  Antidiabetic activity was evaluated in vitro using α-amylase and α-glucosidase inhibitory assays, and in vivo in alloxan-induced diabetic mice. Toxicological effect was investigated in vivo by acute toxicity and sub-acute toxicity tests in mice. Phytochemical analysis revealed a rich phytochemical profile of Halopteris scoparia, with phenolic and flavonoid contents of 55.47 ± 0.70 mg GAE /g and 147.67 ± 1.53 mg QE/g, respectively. LC-MS analysis revealed various bioactive compounds. Halopteris scoparia extract showed remarkable antioxidant potential, with IC50 values of 1.213 ± 0.290 mg/mL and 2.671 ± 0.210 mg/mL in the DPPH and ABTS radical scavenging assays, respectively, and FRAP value of 82.215 ± 0.970 mg AAE/g. Halopteris scoparia extract exhibited promising antidiabetic activity by demonstrating significant α-amylase and α-glucosidase inhibitory activities in vitro, and potent hypoglycaemic effect in vivo comparable to that of glibenclamide. In addition, Halopteris scoparia extract significantly decreased malondialdehyde, and increased the levels of antioxidant enzymes in the pancreas, liver and kidneys of diabetic mice. These results highlight the potentials of H. scoparia extract as a relatively safe natural antioxidant and alternative source of antidiabetic agent(s).

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biography

Hicham Bouchahta, Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Avenue Ibn Battouta, BP 1014, Rabat 10000, Morocco

Department of Medical Genetics, National Institute of Health, Rabat, BP 769 Agdal, Rabat

How to Cite

Study of the Antioxidant and Antidiabetic Properties of the Alga Halopteris Scoparia: In Vitro and In Vivo Evaluation in Alloxan-Induced Diabetic Mice. (2025). Tropical Journal of Natural Product Research , 9(9), 4575 – 4585. https://doi.org/10.26538/tjnpr/v9i9.60

References

1. Kabach I, Ben Mrid R, Bouchmaa N, Bouargalne Y, Zyad A, Nhiri M. Phytochemical Screening, Antioxidant and Cytotoxic Activities of M. vulgare. Int J Pharm Res. 2019; 11(3):338-345.

2. Güner A, Nalbantsoy A, Sukatar A, Karabay Yavaşoğlu NÜ. Apoptosis-Inducing Activities of Halopteris scoparia L. Sauvageau (Brown Algae) on Cancer Cells and Its Biosafety and Antioxidant Properties. Cytotechnol. 2019; 71(3):687-704. doi: 10.1007/s10616-019-00314-5. DOI: https://doi.org/10.1007/s10616-019-00314-5

3. König GM, Kehraus S, Seibert SF, Abdel-Lateff A, Müller D. Natural Products from Marine Organisms and Their Associated Microbes. Chembiochem. 2006; 7(2):229-238. doi: 10.1002/cbic.200500087. DOI: https://doi.org/10.1002/cbic.200500087

4. Dillehay TD, Ramírez C, Pino M, Collins MB, Rossen J, Pino-Navarro JD. Monte Verde: Seaweed, Food, Medicine, and the Peopling of South America. Sci. 2008; 320(5877):784-786. doi: 10.1126/science.1156533. DOI: https://doi.org/10.1126/science.1156533

5. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J Appl Phycol. 2017; 29(2):949-982. doi: 10.1007/s10811-016-0974-5. DOI: https://doi.org/10.1007/s10811-016-0974-5

6. Jinseo L, Sung Won J, Moon S S. Antimicrobial, Antioxidative, Elastase and Tyrosinase Inhibitory Effect of Supercritical and Hydrothermal Halopteris scoparia Extract. Turk J Comput Math Educ. 2021; 12:407–413. doi: 10.17762/turcomat.v12i5.976. DOI: https://doi.org/10.17762/turcomat.v12i5.976

7. Martínez Andrade KA, Lauritano C, Romano G, Ianora A. Marine Microalgae with Anti-Cancer Properties. Mar Drugs. 2018; 16(5):165. doi: 10.3390/md16050165. DOI: https://doi.org/10.3390/md16050165

8. Güner A, Köksal Ç, Erel ŞB, Kayalar H, Nalbantsoy A, Sukatar A, Karabay Yavaşoğlu NÜ. Antimicrobial and Antioxidant Activities with Acute Toxicity, Cytotoxicity and Mutagenicity of Cystoseira compressa (Esper) Gerloff & Nizamuddin From the Coast of Urla (Izmir, Tukey). Cytotechnol. 2015; 67(1):135-143. doi: 10.1007/s10616-013-9668-x. DOI: https://doi.org/10.1007/s10616-013-9668-x

9. AlgaeBase: Listing the World’s Algae. AlgaeBase. https://www.algaebase.org/.

10. Pereira L. Edible Seaweeds of the World. CRC Press; 2016. doi: 10.1201/b19970. DOI: https://doi.org/10.1201/b19970

11. Marine Algae: Biodiversity, Taxonomy, Environmental Assessment, and Biotechnology. CRC Press; 2014. doi: 10.1201/b17540. DOI: https://doi.org/10.1201/b17540

12. A Field Key to the British Brown Seaweeds (Phaeophyta). Field Studies Council. https://www.field-studies-council.org/resources/field-studies-journal/a-field-key-to-the-british-brown-seaweeds-phaeophyta/.

13. Drioua S, El-Guourrami O, Assouguem A, Ameggouz M, Kara M, Ullah R, Bari A, Zahidi A, Skender A, Benzeid H, Doukkali A. Phytochemical study, antioxidant activity, and dermoprotective activity of Chenopodium ambrosioides (L.). Open Chem. (2024); 22(1):20230194.. DOI: https://doi.org/10.1515/chem-2023-0194

14. Huang DJ, Chen HJ, Lin CD, Lin YH. Antioxidant and Antiproliferative Activities of Water Spinach (Ipomoea aquatica Forsk) Constituents. Bot Bull Acad Sin. 2005; 46:99–106.

15. Kabach I, Bouchmaa N, Zouaoui Z, Ennoury A, El Asri S, Laabar A, Oumeslakht L, Cacciola F, El Majdoub YO, Mondello L, Zyad A, Nhiri N, Nhiri M, Ben Mrid R. Phytochemical Profile and Antioxidant Capacity, α-Amylase and α-Glucosidase Inhibitory Activities of Oxalis pes-caprae Extracts in Alloxan-Induced Diabetic Mice. Biomed Pharmacother. 2023; 160:114393. doi: 10.1016/j.biopha.2023.114393. DOI: https://doi.org/10.1016/j.biopha.2023.114393

16. Bo H, Haibin K, Jingsheng H, Xiaoquan B, Hong Z, Youwei W. Extracts of Halenia elliptica Exhibit Antioxidant Properties in vitro and in vivo. Food Chem Toxicol. 2011; 49(1):185-190. doi: 10.1016/j.fct.2010.10.015. DOI: https://doi.org/10.1016/j.fct.2010.10.015

17. Amarowicz R, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil JA. Free-Radical Scavenging Capacity and Antioxidant Activity of Selected Plant Species from the Canadian Prairies. Food Chem. 2004; 84(4):551-562. doi: 10.1016/S0308-8146(03)00278-4. DOI: https://doi.org/10.1016/S0308-8146(03)00278-4

18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic Biol Med. 1999; 26(9-10):1231-1237. doi: 10.1016/s0891-5849(98)00315-3. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3

19. Mrid RB, Bouchmaa N, Kabach I, Zouaoui Z, Chtibi H, Maadoudi ME, Kounnoun A, Cacciola F, El Majdoub YOE, Mondello L, Zyad A, Nhiri M. Dittrichia viscosa L. Leaves: A Valuable Source of Bioactive Compounds with Multiple Pharmacological Effects. Molecules. 2022; 27(7):2108. doi: 10.3390/molecules27072108. DOI: https://doi.org/10.3390/molecules27072108

20. OECD. Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure. OECD; 2022. doi: 10.1787/9789264071049-en. DOI: https://doi.org/10.1787/9789264071049-en

21. Test No. 407: Repeated Dose 28-Day Oral Toxicity Study in Rodents. OECD. https://www.oecd.org/env/test-no-407-repeated-dose-28-day-oral-toxicity-study-in-rodents-9789264070684-en.htm.

22. Dos Santos da Rocha P, de Araújo Boleti AP, do Carmo Vieira M, Carollo CA, da Silva DB, Estevinho LM, Dos Santos EL, de Picoli Souza K. Microbiological Quality, Chemical Profile as Well as Antioxidant and Antidiabetic Activities of Schinus terebinthifolius Raddi. Comp Biochem Physiol C Toxicol Pharmacol. 2019; 220:36-46. doi: 10.1016/j.cbpc.2019.02.007. DOI: https://doi.org/10.1016/j.cbpc.2019.02.007

23. Paula PC, Sousa DO, Oliveira JT, Carvalho AF, Alves BG, Pereira ML, Farias DF, Viana MP, Santos FA, Morais TC, Vasconcelos IM. A Protein Isolate from Moringa oleifera Leaves Has Hypoglycemic and Antioxidant Effects in Alloxan-Induced Diabetic Mice. Molecules. 2017; 22(2) ;271 :1-15. doi: 10.3390/molecules22020271. DOI: https://doi.org/10.3390/molecules22020271

24. Zouaoui Z, Laabar A, El Asri S, Ennoury A, Kabach I, Mondello L, Cacciola F, Taghzouti K, Nhiri M, Nhiri N. Phytochemical profile, antioxidant screening, and antidiabetic effect of pink pepper (Schinus terebinthifolius Raddi) leaves in diabetic mice, Journal of Agriculture and Food Research 2024;18:1-14. Doi: 10.1016/j.jafr.2024.101309. DOI: https://doi.org/10.1016/j.jafr.2024.101309

25. El Omari R, Ben Mrid R, Chibi F, Nhiri M. Involvement of Phosphoenolpyruvate Carboxylase and Antioxidants Enzymes in Nitrogen Nutrition Tolerance in Sorghum bicolor Plants. Russ J Plant Physiol. 2016; 63:719–726. doi: 10.1134/S102144371606008X. DOI: https://doi.org/10.1134/S102144371606008X

26. Aebi H. Catalase in Vitro. Methods Enzymol. 1984; 105:121-126. doi: 10.1016/s0076-6879(84)05016-3. DOI: https://doi.org/10.1016/S0076-6879(84)05016-3

27. Kriengsak T, Unaroj B, Kevin C, Luis C-Z, David HB. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J Food Compos Anal. 2006; 19(6–7):669-675. doi: 10.1016/j.jfca.2006.01.003. DOI: https://doi.org/10.1016/j.jfca.2006.01.003

28. Koh HSA, Lu J, Zhou W. Structural Dependence of Sulfated Polysaccharide for Diabetes Management: Fucoidan From Undaria pinnatifida Inhibiting α-Glucosidase More Strongly Than α-Amylase and Amyloglucosidase. Front Pharmacol. 2020; 11:831. doi: 10.3389/fphar.2020.00831. DOI: https://doi.org/10.3389/fphar.2020.00831

29. Veeraswamy SD, Raju I, Mohan S. Phytochemical Evaluation and Antioxidant Potential of Polyherbal Extract Mixture-an In Vitro and In Silico Study. Appl Biochem Biotechnol. 2023; 195(1):672-692. doi: 10.1007/s12010-022-04141-x. DOI: https://doi.org/10.1007/s12010-022-04141-x

30. Maria H, Concepción S-M, Sonia P-T. Flavonoid–Flavonoid Interaction and Its Effect on Their Antioxidant Activity. Food Chem. 2010; 121(3):691-696. doi: 10.1016/j.foodchem.2009.12.097. DOI: https://doi.org/10.1016/j.foodchem.2009.12.097

31. Shamsudin NF, Ahmed QU, Mahmood S, Shah SAA, Sarian MN, Khattak MMAK, Khatib A, Sabere ASM, Yusoff YM, Latip J. Flavonoids as Antidiabetic and Anti-Inflammatory Agents: A Review on Structural Activity Relationship-Based Studies and Meta-Analysis. Int J Mol Sci. 2022; 23(20):12605. doi: 10.3390/ijms232012605. DOI: https://doi.org/10.3390/ijms232012605