Deciphering the protective efficacy of Portulaca quadrifida extract in Mitigating Cisplatin-Induced Oxidative Hepatotoxicity: Correlative in vivo and in silico analyses

Main Article Content

Geetha Subramaniam
Helan S. Rani Michael
Aswini Anguraj
Ranjithkumar Rajamani
Shivakumar Bandhumy Lingam
Rathish Kumar Sivaraman
Dinesh K.P. Bheeman

Abstract

Cisplatin (CIS) is a widely used chemotherapeutic agent, but it can cause oxidative stress-induced hepatotoxicity. In this study, in-vivo tests exhibited the preventive benefits of Portulaca quadrifida extract (PqE) against liver damage caused by cisplatin. Antioxidant activity in the liver (TBARS, GSH, GPx, SOD, CAT) and liver function tests (SGOT, SGPT, ALP, GGT) were assessed, and the ranges drastically dropped after toxic induction in the liver, as per the dosage levels. in silico docking studies revealed that three compounds from PqE (tetradecamethylcycloheptasiloxane, dimethyl sulfoxide, and dodecanoic acid) showed higher binding affinities towards target proteins. RMSF values were 0.24 ± 0.12 nm, 0.30 ± 0.16 nm, and 0.44 ± 0.24 nm, while the average RMSD values for the 4ZZJ-APO, 4ZZJ-DDA, and 4ZZJ-DMS were 1.03 ± 0.07 nm, 0.66 ± 0.11 nm, and 0.70 ± 0.23 nm. Additionally, dynamic stability and compactness (Rg) were demonstrated by achieving 2.34 ± 0.02 nm, 2.28 ± 0.05 nm, and 2.38 ± 0.10 nm, and SASA metrics showed 182.48 ± 4.51 nm, 181.83 ± 8.10 nm, and 189.40 ± 4.07 nm. Additionally, average intra-hydrogen bond values of 244.03 ± 8.69 nm, 245.51 ± 8.64 nm, and 243.84 ± 8.07 nm were also obtained. These results suggest that PqE protects the liver by modulating oxidative stress pathways and stabilizing key protein interactions. Overall, the study highlights the potential of PqE as a promising hepatoprotective agent for preventing cisplatin-induced liver damage.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Deciphering the protective efficacy of Portulaca quadrifida extract in Mitigating Cisplatin-Induced Oxidative Hepatotoxicity: Correlative in vivo and in silico analyses. (2025). Tropical Journal of Natural Product Research , 9(9), 4563 – 4574. https://doi.org/10.26538/tjnpr/v9i9.59

References

Swapnil A, Zini C, Dishant Kumar M, Renu G, Cheta S, Surbhi J. The Real Burden of Tuberculosis Hidden Cases Diagnosed on Autopsy at a Tertiary Care Center of India. Int. J. Mycobact. 2022;11(1):47-50. https://doi.org/10.4103/ijmy.ijmy_227_21 DOI: https://doi.org/10.4103/ijmy.ijmy_227_21

2. Pandian NSG, Sankar H, Ramalingam S, Saravana R. Hepatoprotective Effect of Hydroalcoholic Extract of Vitis vinifera L Seed on Paracetamol-Induced Liver Damage in Albino Rats. Trop. J Nat. Prod. Res. 2024;8(2):6261-6266. http://www.doi.org/ 10.26538/tjnpr/v8i2.25 DOI: https://doi.org/10.26538/tjnpr/v8i2.25

3. John Sylvester Nas B, Corrinnette Panaga L, Mikaela Florendo G, Daves Gacutan T, Alyanna Celine Dator V, Mary Ann Cesario G, Rina Andrea Delos Santos R, James Patrick Mendez P, Mariel Jose C, Eliana Rachelle Tamana C. in silico Characterization of Toxicophores Found in Lemongrass (Cymbopogon citratus) and its Molecular Interaction with Kidney and Liver Enzymes. J. Prev. Diagn. Treat. Strateg. Med. 2023;2(2):119-128. https://doi.org/ 10.4103/jpdtsm.jpdtsm_71_23 DOI: https://doi.org/10.4103/jpdtsm.jpdtsm_71_23

4. Sheidu AR, Umar ZA, Abubakar A, Ahmed CB, Garba MM, Ogere AI, Murtala SO. Antioxidant and Hepatoprotective Potentials of Methanol Extract of Ficus platyphylla Stem Bark Delile (Moraceae) in Wistar Rats. Trop. J Nat. Prod. Res. 2020;4(3):91-97. https://doi.org/10.26538/tjnpr/v4i3.6 DOI: https://doi.org/10.26538/tjnpr/v4i3.6

5. Fathy M, Darwish MA, Abdelhamid ASM, Alrashedy GM, Othman OA, Naseem M, Dandekar T, Othman EM. Kinetin Ameliorates Cisplatin-Induced Hepatotoxicity and Lymphotoxicity via Attenuating Oxidative Damage, Cell Apoptosis and Inflammation in Rats. Biomedicines. 2022;10(7):1620. https://doi.org/10.3390/biomedicines1007 1620 DOI: https://doi.org/10.3390/biomedicines10071620

6. Gohtama S, Raphaella, Ginting NC, Chiuman L. Protective Effects of Glycine max (L.) Merr. Ethanol Extract against Acetaminophen-Induced Nephrotoxicity and Hepatotoxicity in Wistar Rats. Trop. J Nat. Prod. Res. 2024;9(1):404 –410 https://doi.org/10.26538/tjnpr/v9i1.51 DOI: https://doi.org/10.26538/tjnpr/v9i1.51

7. Iqbal MO, Yahya EB, Andleeb S, Ahmed MM, Javaid MU, Shakeel W, Iqbal I. in vivo assessment of reversing Cisplatin- Induced nephrotoxicity using Jatropha mollissima crude extract and its potential cytotoxicity. Saudi J. Biol. Sci. 2021; 28(12): 7373-7378. https://doi.org/10.1016/j.sjbs.2021.08.057 DOI: https://doi.org/10.1016/j.sjbs.2021.08.057

8. Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Sig. Transduct Target Ther. 2024;9:124. https://doi.org/10.1038/s41392-024-01839-8 DOI: https://doi.org/10.1038/s41392-024-01839-8

9. Soleimani V, Delghandi PS, Moallem SA, Karimi G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: an updated review. Phyther. Res. 2019;33(6):1627-1638. DOI: https://doi.org/10.1002/ptr.6361

10. Al-Kadi A, Ahmed AS, El-Tahawy NFG, Khalifa MMA, El-Daly M. Silymarin protects against sepsis-induced acute liver and kidney injury via anti-inflammatory and antioxidant mechanisms in the rat. J. Adv. Biomed. Pharm. Sci. 2020;3(4):190-197.

11. Ghzaiel I, Zarrouk A, Nury T, Libergoli M, Florio F, Hammouda S, Menetrier F, Avoscan L, Yammine A, Samadi M, Latruffe N, Biressi S, Levy D, Paulo Bydlowski S, Hammami S, Vejux A, Hammami M, Lizard G. Antioxidant Properties and Cytoprotective Effect of Pistacia lentiscus L. Seed Oil against 7β-Hydroxycholesterol-Induced Toxicity in C2C12 Myoblasts: Reduction in Oxidative Stress, Mitochondrial and Peroxisomal Dysfunctions and Attenuation of Cell Death. Antioxidants. 2021;10:1772. https://doi.org/10.3390/ antiox10111772 DOI: https://doi.org/10.3390/antiox10111772

12. Petrovic S, Arsic A, Ristic-Medic D, Cvetkovic Z, Vucic V. Lipid Peroxidation and Antioxidant Supplementation in Neurodegenerative Diseases: A Review of Human Studies. Antioxidants. 2020;9(11):1128. https://doi.org/10.3390/ antiox9111128 DOI: https://doi.org/10.3390/antiox9111128

13. Curcio A, Romano A, Cuozzo S, Di Nicola A, Grassi O, Schiaroli D, Nocera GF, Pironti M. Silymarin in combination with vitamin C, Vitamin E, coenzyme Q10, and selenomethionine to improve liver enzymes and blood lipid profile in NAFLD patients. Medicina. 2020;56(10):544. https://doi.org/10.3390/medicina56100544 DOI: https://doi.org/10.3390/medicina56100544

14. Gillessen A, Schmidt HHJ. Silymarin as Supportive Treatment in Liver Diseases: A Narrative Review. Adv Ther. 2020;37:1279–1301. https://doi.org/10.1007/ s12325-020-01251-y DOI: https://doi.org/10.1007/s12325-020-01251-y

15. Madiha Jaffar H, Al-Asmari F, Atta Khan F, Abdul Rahim M, Zongo E. Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases—A comprehensive narrative review. Food Sci. Nutr. 2024;12:3097–3111. https://doi.org/10.1002/fsn3.4010 DOI: https://doi.org/10.1002/fsn3.4010

16. Wang Y, Yuan AJ, Wu YJ, Wu LM, Zhang L. Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations. J. Func. Foods. 2023;100:105384. https://doi.org/10.1016/ j.jff.2022.105384 DOI: https://doi.org/10.1016/j.jff.2022.105384

17. Hosseinabadi T, Lorigooini Z, Tabarzad M, Salehi B, Rodrigues CF, Martins N, Sharifi-Rad J. Silymarin antiproliferative and apoptotic effects: Insights into its clinical impact in various types of cancer. Phyther. Res. 2019;33(11):2849-2861. https://doi.org/10.1002/ptr.6470 DOI: https://doi.org/10.1002/ptr.6470

18. Dogan D, Meydan I, Komuroglu AU. Protective Effect of Silymarin and Gallic Acid against Cisplatin-Induced Nephrotoxicity and Hepatotoxicity. Int. J. Clin. Pract. 2022; 6541026. https://doi.org/10.1155/2022/6541026 DOI: https://doi.org/10.1155/2022/6541026

19. Yang W, Liang Z, Wen C, Jiang X, Wang L. Silymarin Protects against Acute Liver Injury Induced by Acetaminophen by Downregulating the Expression and Activity of the CYP2E1 Enzyme. Molecules. 2022;27(24):8855. https://doi.org/10.3390/ molecules27248855 DOI: https://doi.org/10.3390/molecules27248855

20. Fitrya F, Elfita E, Kurniawaty NF, Ahsan AN, Amriani A, Agustiarini V, Novita RP. Hepatoprotective effect of ethanol extract of Chinese betel herb (Peperomia pellucida (L.)) on CCl₄-induced hepatotoxicity in experimental animals. Trop J Nat Prod Res. 2025;9(7):3092 –3096 https://doi.org/10.26538/ tjnpr/v9i7.21 DOI: https://doi.org/10.26538/tjnpr/v9i7.21

21. Lalita Ambigai S, Virusha N, Geetha S. Antibacterial effects of Musa sp. ethanolic leaf extracts against methicillin – resistant and susceptible Staphylococcus aureus. S. Afr. J. Chem. Eng. 2021; 35:107 – 110. https://doi.org/10.1016/j.sajce.2020.09.007 DOI: https://doi.org/10.1016/j.sajce.2020.09.007

22. Ujowundu FN, Kalu JO, Ujowundu CO, Onyeocha IO, Onuoha CH, Ibeh RC, Obasi UK, Ntaji OE, Chigbu IF, Ezirim CY. Investigating the Effect of Flavonoid, Saponin, Alkaloids, and Tannins Extracted from Combretum dolichopentalum Diels in CCl4-Induced Hepatotoxicity. Trop. J Nat. Prod. Res. 2022;6(8):1255-1261. https://doi.org/doi.org/10.26538/tjnpr/v6i8.16 DOI: https://doi.org/10.26538/tjnpr/v6i8.16

23. Michael HSR, Mohammed NB, Ponnusamy S, Edward Gnanaraj W. A Folk Medicine: Passiflora incarnata L. Phytochemical Profile with Antioxidant Potency. Turk. J Pharm. Sci. 2022;19(3):287-292. http://www.doi.org/10.4274/tjps.galenos. 2021.88886 DOI: https://doi.org/10.4274/tjps.galenos.2021.88886

24. Anguraj A, Helan Soundra Rani M, Sathish S, Gogul Ramnath M, Rathish Kumar S. A comparative study on biosynthesized silver nanoparticles from H. undatus fruit peel and their therapeutic applications. Discover Nano. 2024;19:49. https://doi.org/ 10.1186/s11671-024-03995-w DOI: https://doi.org/10.1186/s11671-024-03995-w

25. Sachin K Singh, Pavankumar C, Vinoth K, Chaitanya M, Rashmi SP, Saranya P, Sukriti V, Avijit M, Prathiba P, Smriti A, Amandeep S, Navneet K, Patrick A, Yogendra P, Vetriselvan S, Wong LS, Gaurav G, Mohamed M. Abdel-Daim, Jon A, Kamal D. Unravelling the nutraceutical and therapeutic perspectives of corosolic acid: Journey so far and the road ahead. Phytochemistry Reviews. 2025. https://doi.org/ 10.1007/s11101-025-10146-1.

26. Abdulhafiz F, Reduan MFH, Hisam AH, Mohammad I, Abdul Wahab IR, Abdul Hamid FF, Mohammed A, Nordin ML, Shaari R, Bakar LA, Kari ZA, Wei LS, Goh KW, Ahmad Mohd Zain MR. LC–TOF-MS/MS and GC-MS based phytochemical profiling and evaluation of wound healing activity of Oroxylum Indicum (L.) Kurz (Beka). Front. Pharmacol. 2022;13:1050453. https://doi.org/10.3389/fphar.2022.105045 DOI: https://doi.org/10.3389/fphar.2022.1050453

27. Khazaei R, Seidavi A, Bouyeh M. A review on the mechanisms of the effect of silymarin in milk thistle (Silybum marianum) on some laboratory animals. Vet. Med. Sci. 2022;8:289–301. https://doi.org/10.1002/vms3.641 DOI: https://doi.org/10.1002/vms3.641

28. Chinedu E, Samuel Ehiabhi O. Ethnomedicinal, Phytochemical, and Pharmacological Review of Asclepiadaceae. J. Prev. Diagn. Treat. Strategies Med. 2023;2(1):03-18. https://doi.org/10.4103/jpdtsm jpdtsm_100_22

29. Qian A, Zhou L, Shi D, Pang Z, Lu B. Portulaca oleracea alleviates CCl4-induced acute liver injury by regulating hepatic S100A8 and S100A9. Chin. Herb. Med. 2022;15(1):110-116. https://doi.org/10.1016/j.chmed.2022.05.004 DOI: https://doi.org/10.1016/j.chmed.2022.05.004

30. Dugawale TP, Khanwelkar CC, Durgawale PP. Primary Phytochemical Evaluation of P. oleracea and P. quadrifida. Res. J Pharm. Technol. 2021;14(7):3789-3793. https://doi.org/10.52711/0974-360X.2021.00656 DOI: https://doi.org/10.52711/0974-360X.2021.00656

31. Syed Kamil M, Liyakha T, Ahmed MD, Paramjyothi S. Neuropharmacological Effects of Ethanolic Extract of Portulaca quadrifida Linn. In Mice. Int. J. Pharm. Res. 2020; 2:1386-1390.

32. Liang J, Zhao G, Bian Y, Bi G, Sui Q, Zhang H, Shi H, Shan G, Huang Y, Chen Z, Wang L, Zhan C.​ HNF4G increases cisplatin resistance in lung adenocarcinoma via the MAPK6/Akt pathway. PeerJ. 2023;11:14996. https://doi.org/ 10.7717/peerj.14996 DOI: https://doi.org/10.7717/peerj.14996

33. Ghorani V, Saadat S, Khazdair MR, Gholamnezhad Z, El-Seedi H, Boskabady MH. Phytochemical Characteristics and Anti-Inflammatory, Immunoregulatory, and Antioxidant Effects of Portulaca oleracea L.: A Comprehensive Review. Evid. Based Complement Alternat. Med. 2023;2023:29. https://doi.org/ 10.1155/2023/2075444

34. Chen JY, Tsai CL, Tseng CY, Yu PR, Chang YH, Wong YC, Lin HH, Chen JH. in vitro and in vivo Nephroprotective Effects of Nelumbo nucifera Seedpod Extract against Cisplatin-Induced Renal Injury. Plants. 2022;11(23):3357. https://doi.org/ 10.3390/plants11233357 DOI: https://doi.org/10.3390/plants11233357

35. Shomer NH, Allen-Worthington KH, Hickman DL, Jonnalagadda M, Newsome JT, Slate AR, Valentine H, Williams AM, Wilkinson M. Review of Rodent Euthanasia Methods. J. Am. Assoc. Lab. Anim. Sci. 2020;59(3):242-253. http://dx.doi.org/ 10.30802/AALAS-JAALAS-19-000084 DOI: https://doi.org/10.30802/AALAS-JAALAS-19-000084

36. Sinaga E, Fitrayadi A, Asrori A, Rahayu SE, Suprihatin S, Prasasty VD. Hepatoprotective effect of Pandanus odoratissimus seed extracts on paracetamol-induced rats. Pharma. Bio. 2021;59(1):31-39. https://doi.org/10.1080/ 13880209 .2020.1865408

37. Lala V, Zubair M, Minter DA. Liver Function Tests. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2024. https://www.ncbi.nlm.nih.gov/books/NBK482489/

38. Hassan OY, Khatal AA, Alagouri II, Eljrieby LR, Aljaghdaf HM, Muftah SS. Study of the Histological and Histopathological Effects of Garlic Extract (Allium sativum) on Cisplatin-Induced Kidney Damage in Rabbits. J. Advan. Medi. Medi. Res. 2023;35(22):134-152. https://doi.org/10.9734/jammr/ 2023/v35i225255 DOI: https://doi.org/10.9734/jammr/2023/v35i225255

39. Aguilar Diaz De Leon J, Borges CR. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J. Vis. Exp. 2020;159. https://doi.org/10.3791/61122 DOI: https://doi.org/10.3791/61122-v

40. N’Guessan MF, Sery BB, Vanie FJ, Ekissi NA, Djohan YF, Coulibaly FA, Djaman AJ. Evaluation of Glutathione Peroxidase Enzymatic Activity in Seminal Plasma of Patients Treated at the Institute Pasteur in Cote d’Ivoire. Adv. in Reprod. Sci. 2023;11:116-126. https://doi.org/10.4236/arsci.2023.114011 DOI: https://doi.org/10.4236/arsci.2023.114011

41. Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, Dick, TP, Finkel T, Forman HJ, Janssen-Heininger Y, Gems D, Kagan VE, Kalyanaraman B, Larsson, NG, Milne GL, Nystrom T, Poulsen HE, Radi R, Remmen HV, Schumacker PT, Thornalley PJ, Toyokuni S, Winterbourn CC, Yin H, Halliwell B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab. 2022;4:651–662. https://doi.org/10.1038/ s42255-022-00591-z DOI: https://doi.org/10.1038/s42255-022-00591-z

42. Makiyah SNN, Usman S, Dwijayanti DR. in silico Toxicity Prediction of Bioactive Compounds of Dioscorea alata L. Trop. J Nat. Prod. Res. 2022;6(10):1587-1596. http://www.doi.org/10.26538/tjnpr/v6i10.5 DOI: https://doi.org/10.26538/tjnpr/v6i10.5

43. Volkov V, Lobanov A, Voronkov M, Baygildiev T, Misin V, Tsivileva O. Kinetics and Mechanism of Epinephrine Autoxidation in the Presence of Plant Superoxide Inhibitors: A New Look at the Methodology of Using a Model System in Biological and Chemical Research. Antioxidants. 2023;12(8):1530. https://doi.org/10.3390/ antiox12081530 DOI: https://doi.org/10.3390/antiox12081530

44. Jaganjac M, Sredoja Tisma V, Zarkovic N. Short Overview of Some Assays for the Measurement of Antioxidant Activity of Natural Products and Their Relevance in Dermatology. Molecules. 2021;26(17):5301. https://doi.org/10.3390/ molecules 26175301 DOI: https://doi.org/10.3390/molecules26175301

45. Murugesan V, Palanivel P, Ramesh G, Ganesh D, Michael HSR, Bandhumy Lingam S, Sivaraman RK. Exploring the antibacterial potential of Clidemia hirta leaf extract against the pathogenicity of Pseudomonas aeruginosa: in vitro and in silico approaches. Front. Pharmacol. 2025;16:1555542. https://doi.org/10.3389/fphar. 2025.1555542 DOI: https://doi.org/10.3389/fphar.2025.1555542

46. Chakravorty A, Hussain A, Cervantes LF, Lai TT, Charles L. Exploring the Limits of the Generalized CHARMM and AMBER Force Fields through Predictions of Hydration Free Energy of Small Molecules. Brooks III. J. Chem. Inf. Model. 2024;64(10):4089-4101. https://doi.org/10.1021b/ acs.jcim.4c 00126 DOI: https://doi.org/10.1021/acs.jcim.4c00126

47. Jawahar Nuziba Begum A, Govindaraj M, Murugasamy Maheswari K, Raamji S, Sivaraman RK, Michael HSR, Chandramohan V, Rathnasamy S, Bandhumy Lingam S. in silico docking and dynamics of selected secondary metabolites of Albizia lebbeck against Androgen Receptor (AR) for the treatment of prostate cancer. J. Microbiol. Biotechnol. Food Sci. 2024;14(3):10608. https://doi.org/10.55251/jmbfs.10608 DOI: https://doi.org/10.55251/jmbfs.10608

48. Sinaga E, Fitrayadi A, Asrori A, Rahayu SE, Suprihatin S, Prasasty VD. Hepatoprotective effect of Pandanus odoratissimus seed extracts on paracetamol-induced rats. Pharm Biol. 2021;59(1):31-39. https://doi.org/10.1080/13880209.2020. 1865408 DOI: https://doi.org/10.1080/13880209.2020.1865408

49. Ghorani V, Saadat S, Khazdair MR, Gholamnezhad Z, El-Seedi H, Boskabady MH. Phytochemical Characteristics and Anti-Inflammatory, Immunoregulatory, and Antioxidant Effects of Portulaca oleracea L.: A Comprehensive Review. Evid Based Complement Alternat Med. 2023; 2023:2075444. https://doi.org/10.1155/2023/ 2075444 DOI: https://doi.org/10.1155/2023/2075444

50. Farkhondeh T, Samarghandian S. The therapeutic effects of Portulaca oleracea L. in Hepatogastric disorders. Gastroenterología y Hepatología. 2019;42(2):127-132. https://doi.org/10.1016/j.gastrohep.2018.07.016 DOI: https://doi.org/10.1016/j.gastrohep.2018.07.016

51. Sudhakar D, Krishna Kishore R, Parthasarathy PR. Portulaca oleracea L. extract ameliorates the cisplatin-induced toxicity in chick embryonic liver. Indian J Biochem Biophys. 2010;47(3):185-9.

52. Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol. 2002;9(9):646-652 https://doi.org/10.1038/nsb0902-646 DOI: https://doi.org/10.1038/nsb0902-646

53. Hollingsworth SA, Dror RO. Molecular Dynamics Simulation for All. Neuron. 2018;99(6):1129-1143 https://doi.org/10.1016/j.neuron.2018.08.011 DOI: https://doi.org/10.1016/j.neuron.2018.08.011

54. Moritsugu K, Terada T, Kidera A. Free-Energy Landscape of Protein-Ligand Interactions Coupled with Protein Structural Changes. J Phys Chem B. 2017;121(4):731-740 https://doi.org/10.1021/acs.jpcb.6b11696 DOI: https://doi.org/10.1021/acs.jpcb.6b11696

55. Kollman PA, Massova I, Reyes C, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33(12):889-897 https://doi.org/10.1021/ar000033j DOI: https://doi.org/10.1021/ar000033j

56. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449-461 https://doi.org/10.1517/17460441.2015.1032936 DOI: https://doi.org/10.1517/17460441.2015.1032936