Inhibition of Hyperpigmentation by Padina australis Hauck on B16F10 Melanoma Cells In Vitro and Emulgel Formulation

Main Article Content

Wirasti Wirasti
Retno Murwanti
Nanang Fakhrudin
Erna P Setyowati

Abstract

Several types of brown seaweed (Phaeophyceae) Hauck have been studied as active ingredients in skin-brightening cosmetics. However, Padina australis has not been specifically investigated as a skin-whitening agent. This study aims to examine the anti-melanogenic effects of Padina australis Hauck through ethyl acetate fractionation, purification using Preparative Thin Layer Chromatography (PTLC), and purity analysis with High-Performance Liquid Chromatography (HPLC) using fucoxanthin as a reference. The results showed that the isolate had the same spot pattern as fucoxanthin and a purity level of 96.8%, confirming its identity as fucoxanthin. Melanin content and depigmentation assays on B16F10 murine melanoma cells revealed that the ethyl acetate fraction (EAF) exhibited depigmentation activity of 55.47% without α-MSH (alpha-Melanocyte-Stimulating Hormone)  and 38.08% with α-MSH, with no significant difference compared to kojic acid (72,09% without and 66.813% with, α-MSH, p>0.05). An emulgel formulation containing EAF as an active ingredient showed a Sun Protection Factor (SPF) value of 13.289, categorized as providing maximum protection. Stability testing using a 12-cycle cycling test (4ºC and 40ºC) and additional evaluation on day 30 demonstrated that spreadability, adhesiveness, and viscosity remained stable. This study suggests that Padina australis has potential as an active skin-brightening agent, with an emulgel formulation offering effective SPF protection and excellent physical stability.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biography

Wirasti Wirasti, Doctoral Program, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia

Undergraduate Pharmacy Study Program, Universitas Muhammadiyah Pekajangan Pekalongan, Central Java, Indonesia

How to Cite

Inhibition of Hyperpigmentation by Padina australis Hauck on B16F10 Melanoma Cells In Vitro and Emulgel Formulation. (2025). Tropical Journal of Natural Product Research , 9(9), 4538 – 4545. https://doi.org/10.26538/tjnpr/v9i9.56

References

1. Chao HC, Najjaa H, Villareal MO, Ksouri R, Han J, Neffati M, et al. Arthrophytum scoparium inhibits melanogenesis through the down-regulation of tyrosinase and melanogenic gene expressions in B16 melanoma cells. Exp Dermatol. 2013;22(2):131–136. DOI: https://doi.org/10.1111/exd.12089

2. Bäsler K, Bergmann S, Heisig M, Naegel A, Zorn-Kruppa M, Brandner JM. The role of tight junctions in skin barrier function and dermal absorption. J Control Release. 2016 Nov;242:105–118. DOI: https://doi.org/10.1016/j.jconrel.2016.08.007

3. Matsuura R, Ukeda H, Sawamura M. Tyrosinase inhibitory activity of citrus essential oils. J Agric Food Chem. 2006 Mar;54(6):2309–2313. DOI: https://doi.org/10.1021/jf051682i

4. Morais T, Cotas J, Pacheco D, Pereira L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics [Internet]. 2021; Available from: https://www.mdpi.com/962654 DOI: https://doi.org/10.3390/cosmetics8010008

5. Yang HL, Lin CP, Gowrisankar YV, Huang PJ, Chang WL, Shrestha S, et al. The anti-melanogenic effects of ellagic acid through induction of autophagy in melanocytes and suppression of UVA-activated α-MSH pathways via Nrf2 activation in keratinocytes. Vol. 185, Biochemical pharmacology. 2021. p. 114454. DOI: https://doi.org/10.1016/j.bcp.2021.114454

6. Nurjanah, Suwandi R, Anwar E, Maharany F, Hidayat T. Characterization and formulation of sunscreen from seaweed Padina australis and Euchema cottonii slurry. IOP Conf Ser Earth Environ Sci. 2019;404(1). DOI: https://doi.org/10.1088/1755-1315/404/1/012051

7. Namjooyan F, Farasat M, Alishahi M, ... The anti-melanogenesis activities of some selected brown macroalgae from northern coasts of the Persian Gulf [Internet]. Brazilian Archives of …. SciELO Brasil; 2019. Available from: https://www.scielo.br/j/babt/a/zQXGk77qJbXhKsbtpbk3SLc/?lang=en DOI: https://doi.org/10.1590/1678-4324-2019180198

8. Hadi AM, Dianursanti. Essence formulation using extract from microalgae Spirulina sp as anti-aging and anti-inflammatory using variance of solvent and sonication time. AIP Conf Proc [Internet]. 2021; Available from: https://aip.scitation.org/doi/abs/10.1063/5.0047569 DOI: https://doi.org/10.1063/5.0047569

9. Shimoda H, Tanaka J, Shan SJ, Maoka T. Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J Pharm Pharmacol. 2010;62(9):1137–1145. DOI: https://doi.org/10.1111/j.2042-7158.2010.01139.x

10. Jeon HJ, Kim K, Kim YD, Lee SE. Antimelanogenic activities of piperlongumine derived from Piper longum on murine B16F10 melanoma cells in vitro and zebrafish embryos in vivo: its molecular mode of depigmenting action. Appl Biol Chem [Internet]. 2019;62(1). Available from: https://doi.org/10.1186/s13765-019-0468-7 DOI: https://doi.org/10.1186/s13765-019-0468-7

11. Nurrochmad A, Wirasti W, Dirman A, Lukitaningsih E, Rahmawati A, Fakhrudin N. Effects of Antioxidant, Anti-Collagenase, Anti-Elastase, Anti-Tyrosinase of The Extract and Fraction From Turbinaria decurrens Bory. Indones J Pharm. 2018;29(4):188. DOI: https://doi.org/10.14499/indonesianjpharm29iss4pp188

12. Di Petrillo A, González-Paramás AM, Era B, Medda R, Pintus F, Santos-Buelga C, et al. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts. BMC Complement Altern Med [Internet]. 2016;16(1):1–9. Available from: http://dx.doi.org/10.1186/s12906-016-1442-0 DOI: https://doi.org/10.1186/s12906-016-1442-0

13. Kim M jin, Kim DS, Yoon H seok, Lee WJ, Lee NH, Hyun C gu. Melanogenesis inhibitory activity of Korean Undaria pinnatifida in mouse B16 melanoma cells. 2014;7(2):89–92. DOI: https://doi.org/10.2478/intox-2014-0012

14. Airin CM, Hana A, Astuti P, Husni A, ... Sargassum crasifolium Extract Could Prevent the Decrese in the Thyroxine Hormone and the Body Weight Loss of Javanese Randu Goats during Transportation. J Food Drugs [Internet]. Available from: https://journal.ugm.ac.id/v3/JFPS/article/view/850

15. Jeengar MK, Rompicharla SVK, Shrivastava S, Chella N, Shastri NR, Naidu VGM, et al. Emu oil based nano-emulgel for topical delivery of curcumin. Int J Pharm [Internet]. 2016;506(1–2):222–36. Available from: http://dx.doi.org/10.1016/j.ijpharm.2016.04.052 DOI: https://doi.org/10.1016/j.ijpharm.2016.04.052

16. Chandra D. Uji Fisikokiimia Sediaan Emulsi, Gel, Emulgel Ekstrak Etanol Goji Berry. Jayapangus Press. 2022;11(2):219–228. DOI: https://doi.org/10.48191/medfarm.v11i2.142

17. Dutra EA, Da Costa E Oliveira DAG, Kedor-Hackmann ERM, Miritello Santoro MIR. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Rev Bras Ciencias Farm J Pharm Sci. 2004;40(3):381–385. DOI: https://doi.org/10.1590/S1516-93322004000300014

18. Sekandi P, Namukobe J, Byamukama R, Nagawa CB, Bacher M, Rosenau T, et al. The antibacterial, antioxidant and sun protection potential of a benzophenone from Dolichopentas decora (S. Moore). Pharmacol Res - Nat Prod [Internet]. 2025;6(December 2024):100135. Available from: https://doi.org/10.1016/j.prenap.2024.100135 DOI: https://doi.org/10.1016/j.prenap.2024.100135

19. Okolie NP, Falodun A, Davids O. Evaluation of the Antioxidant Activity of Root Extract of Pepper Fruit (Dennetia Tripetala), and It’S Potential for the Inhibition of Lipid Peroxidation. African J Tradit Complement Altern Med. 2014;11(3):221–7. DOI: https://doi.org/10.4314/ajtcam.v11i3.31

20. Kadi A. Interaksi Makroalgae dan Lingkungan Perairan Teluk Carita Pandeglang. Biosfera. 2017;34(1):32. DOI: https://doi.org/10.20884/1.mib.2017.34.1.391

21. Zhang Y, Xu M, Aðalbjörnsson BV. Sugaring-out: a novel sample preparation method for determination of fucoxanthin in Icelandic edible seaweeds. J Appl Phycol. 2021;33(1):515–521. DOI: https://doi.org/10.1007/s10811-020-02321-y

22. Kurinjery A, Kulanthaiyesu A. Anti-hyaluronidase and cytotoxic activities of fucoxanthin cis/trans isomers extracted and characterized from 13 brown seaweeds. Process Biochem [Internet]. 2022;122(P2):53–68. Available from: https://doi.org/10.1016/j.procbio.2022.09.024 DOI: https://doi.org/10.1016/j.procbio.2022.09.024

23. Purwanti RA, Farida Y, Taurhesia S. Formulasi Sediaan Serum Anti Aging dengan Kombinasi dari Ekstrak Buah Tomat (Lycopersicum esculentum L.) dan Ekstrak Kulit Buah Semangka (Citrullus lanatus Thunb.). J Fitofarmaka Indones. 2022;9(2):19–24. DOI: https://doi.org/10.33096/jffi.v9i2.864

24. Sardinella S, Jusuf H, Hadjarati H, Mustapa MA, Abdulkadir WS, Suryadi AMA, et al. Tropical Journal of Natural Product Research Characterization and Formulation of Anti-Aging Cream Using Collagen Derived from. 2025;9:3013–3020.

25. Yang SI, Liu S, Brooks GJ, Lanctot Y, Gruber J V. Reliable and simple spectrophotometric determination of sun protection factor: A case study using organic UV filter-based sunscreen products. J Cosmet Dermatol. 2018;17(3):518–522. DOI: https://doi.org/10.1111/jocd.12390

26. Widyaningtyas Y. Optimasi formula emulgel Sunscreen Ekstrak Etil Asetat Isoflavon Tempe Dengan Carbopol 940 Sebagai Gelling Agent Dan VCO Sebagai Fase Minyak: Aplikasi Desain Faktorial. Sci Rep. 2010;