Evaluating the Anti-Hyperuricemic Activity of the Ethanol Extract of Leucas Lavandulaefolia in Wistar Rats
Main Article Content
Abstract
Leucas lavandulaefolia, commonly called Lenglengan, is widely used in traditional medicine, and has been reported to possess various pharmacological activities, including hepatoprotective, antipyretic, and anti-inflammatory effects. This study aimed to investigate the anti-hyperuricemic effect of the ethanol extract of L. lavandulaefolia leaves. Thirty-five (35) Wistar rats were divided into seven groups of five rats each. Group I: normal control, Group II: negative control (CMC-Na 10 mL/kg BW), Group III: positive control (allopurinol 9.0 mg/kg BW), and groups IV-VII: were administered ethanol extract of L. lavandulaefolia leaves at doses of 100, 200, 400, and 800 mg/kg BW, respectively. Prior to the treatments, hyperuricemia was induced in the rats except the normal control by the administration of purine-rich diet comprising chicken liver juice (25 mL/kg twice daily for 14 days), and Gnetum gnemon fruit (2 g/kg daily for 14 days). Hyperuricemic rats were treated with the extract, allopurinol, or untreated (negative control) according to their respective groups. Treatments were given once daily for 14 days. Serum uric acid concentrations were measured at intervals of 5 days beginning from the 15th day until the 30th day post-induction. Results showed that the ethanol leaf extract of L. lavandulaefolia exhibited a significant and a dose-dependent anti-hyperuricemic activity, with the 800 mg/kg BW dose showing the highest activity, with a 66.27% reduction in serum uric acid concentration on the 30th day post-induction. The ED50 was found to be 322 mg/kg BW. Therefore, L. lavandulaefolia has the potential to be developed as a natural agent for the treatment of gout.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Chen CY, Huang CC, Tsai KC, Huang WJ, Huang WC, Hsu YC, Hsu FL. Evaluation of the Antihyperuricemic Activity of Phytochemicals from Davallia formosana by Enzyme Assay and Hyperuricemic Mice Model. J Evidence-Based Complement Altern Med. 2014; 2014:873607. DOI: https://doi.org/10.1155/2014/873607
2. Battelli MG, Bortolotti M, Polito L, Bolognesi A. The Role of Xanthine Oxidoreductase and Uric Acid in Metabolic Syndrome. Biochim Biophys Acta Mol Basis Dis. 2018; 1864(8):2557-2565. DOI: https://doi.org/10.1016/j.bbadis.2018.05.003
3. Jeong H, Moon JE, Jeon CH. Hyperuricemia is Associated with an Increased Prevalence of Metabolic Syndrome in the General Population and a Decreased Prevalence of Diabetes in Men. J Rheum Dis. 2020; 27(4):247-260. DOI: https://doi.org/10.4078/jrd.2020.27.4.247
4. Ishikawa T, Maeda T, Hashimoto T, Nakagawa T, Ichikawa K, Sato Y, Kanno Y. Long-Term Safety and Effectiveness of the Xanthine Oxidoreductase Inhibitor, Topiroxostat in Japanese Hyperuricemic Patients with or Without Gout: A 54-Week Open-Label, Multicenter, Post-Marketing Observational Study. Clin Drug Invest. 2020; 40(9):847-859. DOI: https://doi.org/10.1007/s40261-020-00941-3
5. Makhija M, Inder I, Chandrashekar KS, Lobo L, Richard R, Jaykumar J. Phytochemical and Pharmacological Profile of Leucas lavandulaefolia: A Review. Res J Med Plant. 2011; 5(5):500-507. DOI: https://doi.org/10.3923/rjmp.2011.500.507
6. Kumar S, Singh N, Mittal A, Kharkwal H, Jain SK, Goel B. The Genus Leucas: A Review on Phytochemistry and Pharmacological Activities. Fitoterapia. 2023; 167:105492. DOI: https://doi.org/10.1016/j.fitote.2023.105492
7. Begum P, Wang Y, Fugetsu B. Biologically Active Compounds from Leucas Lavandulaefolia. Int J Pharm Sci Res. 2015; 6(3):1013-1021.
8. Chandrashekar KS and Prasanna KS. Hypoglycemic Effect of Leucas lavandulaefolia Willd in Alloxan-Induced Diabetic Rats. J Young Pharm. 2009; 1(4):326-329. DOI: https://doi.org/10.4103/0975-1483.59322
9. Murugan NB, Mishra BK, Paul B. Antioxidant and Antibacterial Evaluation of Medicinal Plants Used in the Starter Culture (Wanti) of Fermented Rice Beverage in West Garo Hills, Meghalaya. Res Rev: J Pharmacogn Phytochem. 2018; 7(1):1669-1674. DOI: https://doi.org/10.30954/2321-712X.01.2018.5
10. Jayaraman S and Variyar EJ. Role of Taraxerone Isolated from Leucas lavandulifolia, as an Immunomodulator. J Ethnopharmacol. 2021; 278:114307. DOI: https://doi.org/10.1016/j.jep.2021.114307
11. Chandrashekar KS, Arun BJ, Styanarayana D, Subramanyam EVS. Flavonoid Glycoside from Leucas lavandulifolia Aerial Parts. Indian J Chem. 2006; 45:1968-1969.
12. Amriani A, Muharni M, Carissa RD, Addinni F, Yohandini H, Ferlinahayati, Hariani PL. Evaluation of Analgesic and Anti-Inflammatory Activity of Ethanol Extract from Leucas Lavandulaefolia Rees Leaves. Res J Pharm Technol. 2024; 17(6):2883-2888. DOI: https://doi.org/10.52711/0974-360X.2024.00452
13. Fitrya, Muharni. An Antihyperuricemia Effect of Ethanol Extract of Tunjuk Langit Rhizome (Helmynthostachys zaylanica Linn Hook) on Swiss Male Mice. Trad Med J. 2014; 19(1):14-18.
14. Vijeesh V, Vysakh A, Jisha N, Latha MS. In Vitro Enzyme Inhibition and In Vivo Anti-Hyperuricemic Potential of Eugenol: An Experimental Approach. Drug Dev Ind Pharm. 2021; 47(12):1998-2003. DOI: https://doi.org/10.1080/03639045.2022.2083156
15. Nurcahyani E, Herliani N, Kanedi M. Antihyperuricemia Activity of Vanilla (Vanilla planifolia Andrews) Fruits Ethanol Extract to Male Mice (Mus musculus L.). Biomed Pharmacol J. 2022; 15(3):1583-1588 DOI: https://doi.org/10.13005/bpj/2496
16. Kim JY, Wang Y, Li ZP. Baiseitova A, Ban YJ, Park KH. Xanthine Oxidase Inhibition and Anti-LDL Oxidation by Prenylated Isoflavones From Flemingia philippinensis Root. Molecules. 2020; 25(13):3074. DOI: https://doi.org/10.3390/molecules25133074
17. Sari NK, Soemardji AA, Fidrianny I. The Effect of Melinjo (Gnetum gnemon L.) Leaves and Melinjo Peel Extracts on Induced-Hyperuricemia Male Rats Model. J Med Health. 2019; 2(4):956-964. DOI: https://doi.org/10.28932/jmh.v2i4.1840
18. Hasimun P, Muzaki YAR, Sodik JJ, Sukmawati IK, Kusriani H. Effect of Kaempferia galanga L. on Xanthine Oxidase
Activity and Arterial Stiffness in Hyperuricemia. Trop J Nat Prod Res. 2025; 9(2):664-669. DOI: https://doi.org/10.26538/tjnpr/v9i2.31
19. Wahyuningsih S, Sukandar EY, Sukrasno, Lofika DN. Antihyperuricemia Activity of the Ethanol Extract of Rosella Calyx and Its Fraction (Hibiscus sabdariffa Linn) on Male Wistar Rats. Int J Pharm Pharm Sci. 2016; 8(3):278-280.
20. Meng-Qi Z, Ke-Xin S, Xu G, Ying-Ying C, Cai-Yun F, Jia-Shu C, Joao CMB, Miguel AP, Jin-Yue S, Jian-Dong Z, Ning-Yang L, Chao L. The Anti Hyperuricemia Activity of Astragali Radix Through Regulating the Expression of Uric Acid Transporters Via PI3K/Akt Signalling Pathway. J Ethnopharmacol. 2023; 317:116770. DOI: https://doi.org/10.1016/j.jep.2023.116770
21. Endrini S, Bakar FIA, Bakar MFA, Abdullah N, Marsiati H. Phytochemical Profiling, In Vitro and In Vivo Xanthine Oxidase Inhibition and Antihyperuricemic Activity of Christia vespertilionis Leaf. Biocatal Agric Biotechnol. 2023; 48:102645. DOI: https://doi.org/10.1016/j.bcab.2023.102645
22. Sekine M, Okamoto K, Pai EF, Nagata K, Ichida K, Hille R, Nishino T. Allopurinol and Oxypurinol Differ in Their Strength and Mechanisms of Inhibition of Xanthine Oxidoreductase. J Biol Chem. 2023; 299(9):105189. DOI: https://doi.org/10.1016/j.jbc.2023.105189
23. Huang CY, Chang YY, Chang ST, Chang HT. Xanthine Oxidase Inhibitory Activity and Chemical Composition of Pistacia chinensis Leaf Essential Oil. Pharmaceutics. 2022; 14(10):1982. DOI: https://doi.org/10.3390/pharmaceutics14101982
24. Xue H, Xu M, Gong D, Zhang G. Mechanism of Flavonoids Inhibiting Xanthine Oxidase and Alleviating Hyperuricemia from Structure–Activity Relationship and Animal Experiments: A Review. Food Front. 2024; 4(4):1643-1665. DOI: https://doi.org/10.1002/fft2.287
25. Feng S, Wu S, Xie F, Yang CS, Shao, P. Natural Compounds Lower Uric Acid Levels and Hyperuricemia: Molecular Mechanisms and Prospective. Trends Food Sci Technol. 2022; 123:87-102. DOI: https://doi.org/10.1016/j.tifs.2022.03.002
26. Hu Q, Hu H, Zhang X, Wang X, Jiao RQ, Kong LD. Quercetin Regulates Organic Ion Transporter and Uromodulin Expression and Improves Renal Function in Hyperuricemic Mice. Eur J Nutr. 2012; 51(5):593-606. DOI: https://doi.org/10.1007/s00394-011-0243-y
27. Balazs O, Dombi A, Zsidó BZ, Hetényi C, Valentová K, Vida RG, Poór M. Inhibition of Xanthine Oxidase-Catalyzed Xanthine and 6-Mercaptopurine Oxidation by Luteolin, Naringenin, Myricetin, Ampelopsin and Their Conjugated Metabolites. Biomed Pharmacother. 2023; 167:115548. DOI: https://doi.org/10.1016/j.biopha.2023.115548
28. Mohos V, Fliszár-Nyúl E, Poór M. Inhibition of Xanthine Oxidase-Catalyzed Xanthine and 6-Mercaptopurine Oxidation by Flavonoid Aglycones and Some of Their Conjugates. Int J Mol Sci. 2020; 21(9):3256. DOI: https://doi.org/10.3390/ijms21093256
29. Adachi SI, Oyama M, Kondo Y, Agasaki K. Comparative Effects of Quercetin, Luteolin, Apigenin and Their Related Polyphenols on Uric Acid Production in Cultured Hepatocytes and Suppression of Purine Bodies-Induced Hyperuricemia by Rutin in Mice. Cytotechnol. 2021; 73(3):343-351. DOI: https://doi.org/10.1007/s10616-021-00452-9
30. De Souza MR, de Paula CA, de Resende, MLP, Grabe-Guimarães, AJD, de Souza Filho, DA. Saúde-Guimarães. Pharmacological Basis for the Use of Lychnophora trichocarpha in Gouty Arthritis: Anti-Hyperuricemic and Anti-Inflammatory Effects of Its Extract, Fraction and Constituents. J Ethnopharmacol. 2012; 142:845-850. DOI: https://doi.org/10.1016/j.jep.2012.06.012
31. Bernardes ACFPF, Coelho GB, Araújo MCPM, Saúde-Guimarães DA. In vivo anti-hyperuricemic activity of sesquiterpene lactones from Lychnophora species. Rev Bras Farmacogn. 2019; 29(2):241-245. DOI: https://doi.org/10.1016/j.bjp.2018.12.008
32. Kumar S, Pandey AK. Chemistry and Biological Activities of Flavonoids: An Overview. Sci World J. 2013; 2013:162750. DOI: https://doi.org/10.1155/2013/162750


