Integrative Network Pharmacology and Molecular Docking Analysis of Uncaria gambir Roxb. Against MCF-7 Human Breast Cancer Cells
Main Article Content
Abstract
Breast cancer (BC) remains a leading cause of cancer-related mortality among women, particularly those with estrogen receptor-positive (ER+) disease. The Michigan Cancer Foundation-7 (MCF-7) subtype presents notable therapeutic challenges due to its prevalence and limited response to standard treatments. This study used network pharmacology and molecular docking to assess Uncaria gambir Roxb. (UGR)'s anticancer potential against MCF-7 cells. Active compounds from the ethanol UGR extract were obtained from the literature and screened based on pharmacokinetic and toxicological parameters, including oral bioavailability, drug-likeness, intestinal absorption, LD₅₀, and inactive cytotoxicity. The target genes of compounds and diseases were retrieved from GeneCards. STRING was used to build protein–protein interaction networks, and Cytoscape was employed to visualize them. ShinyGO was utilized to analyze Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Molecular docking was conducted with AutoDock Vina via PyRx 0.98. Four compounds; catechin, epicatechin, hirsutin, and quercetin, met the ADMET selection criteria. A total of 604 overlapping target genes were identified, with TP53, CTNNB1, SRC, and ESR1 serving as major network hubs. Gene Ontology and KEGG analyses confirmed the involvement of these targets in key cancer-related pathways. Catechin and quercetin acted as central modulators. The docking results showed strong affinities to the targets: catechin–TP53 (-7.2 kcal/mol), quercetin–SRC (-8.9 kcal/mol), ESR1 (-8.5 kcal/mol), and epicatechin–ESR1 (-8.8 kcal/mol). The potential of UGR as a source of multi-target natural compounds for BC therapy was demonstrated by these findings, which were on par with or better than reference medications.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Iacopetta D, Ceramella J, Baldino N, Sinicropi MS, Catalano A. Targeting breast cancer: An overlook on current strategies. Int J Mol Sci. 2023; 24(4) 3643. DOI: https://doi.org/10.3390/ijms24043643
2. Telang NT. The divergent effects of ovarian steroid hormones of the MCF-7 model for luminal A breast cancer: Mechanistic leads for therapy. Int J Mol Sci. 2022; 23(9):4800. DOI: https://doi.org/10.3390/ijms23094800
3. Clusan L, Goff P Le, Flouriot G, Pakdel F. A closer look at estrogen receptor mutations in breast cancer and their implications for estrogen and antiestrogen responses. Int J Mol Sci. 2021; 22(2):1–16. DOI: https://doi.org/10.3390/ijms22020756
4. Mohapatra R, Panda P, Rout SS. QSAR Based Drug Repurposing: A new paradigm in breast cancer research. Indian J Pharm Educ Res. 2024; 58(3):695–708. DOI: https://doi.org/10.5530/ijper.58.3.78
5. Hasan R, Alsaiari AA, Fakhurji BZ, Habibur M, Molla R, Asseri AH, et al. Application of mathematical modeling and computational. molecules. 2022; 27(13):4169. DOI: https://doi.org/10.3390/molecules27134169
6. Saurabh S, Sivakumar PM, Perumal V, Khosravi A, Sugumaran A, Prabhawathi V. Molecular dynamics simulations in drug discovery and drug delivery. Eng Mater. 2020; 275–301. DOI: https://doi.org/10.1007/978-3-030-36260-7_10
7. Khan I, Zaib S. Designing next-generation drug-like molecules for medicinal applications. Molecules. 2023; 28(4):2–5. DOI: https://doi.org/10.3390/molecules28041860
8. Jia ZC, Yang X, Wu YK, Li M, Das D, Chen MX. The art of finding the right drug target: Emerging methods and strategies. Pharmacol Rev. 2024; 76(5):896–914. DOI: https://doi.org/10.1124/pharmrev.123.001028
9. Zubair MS, Yuyun Y, Musnina WS, Najib A, Nainu F, Arba M. Network pharmacology and molecular docking studies of ethnopharmacological plants from Sulawesi as antidiabetics. Trop J Nat Prod Res. 2025; 9(3):1123–35. DOI: https://doi.org/10.26538/tjnpr/v9i3.30
10. Hasanah N, Saputri FC, Bustamam A, Sanghiran LV, Yanuar A. Decoding The therapeutic potential of Empon-Empon: A bioinformatics expedition unraveling mechanisms against COVID-19 and atherosclerosis. Int J Appl Pharm. 2024; 16(2):215–23. DOI: https://doi.org/10.22159/ijap.2024v16i2.50128
11. Federico A, Fratello M, Scala G, Möbus L, Pavel A, Del Giudice G.. Integrated network pharmacology approach for drug combination discovery: A multi‐cancer case study. Cancers (Basel). 2022; 14(8):1–16. DOI: https://doi.org/10.3390/cancers14082043
12. Yunarto N, Calvin CC, Sulistyowati I, Oktoberia IS, Reswandaru UN, Elya B. Development and validation of a high-performance liquid chromatography-based method for catechin isolated from the leaves of gambir (Uncaria gambir Roxb). Trop J Nat Prod Res. 2023; 7(3):2569–73. DOI: https://doi.org/10.26538/tjnpr/v7i3.16
13. Ali R, Sultan A, Ishrat R, Haque S, Khan NJ, Prieto MA. Identification of new key genes and their association with breast cancer occurrence and poor survival using in silico and in vitro methods. Biomedicines. 2023; 11(5):1271. DOI: https://doi.org/10.3390/biomedicines11051271
14. Fu S, Zhou Y, Hu C, Xu Z, Hou J. Network pharmacology and molecular docking technology-based predictive study of the active ingredients and potential targets of rhubarb for the treatment of diabetic nephropathy. BMC Complement Med Ther]. 2022; 22(1):1–20. DOI: https://doi.org/10.1186/s12906-022-03662-6
15. Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci U S A. 2017; 114(2):206–14. DOI: https://doi.org/10.1073/pnas.1617020114
16. Kotlyarov S. Effects of Atherogenic Factors on Endothelial Cells: Bioinformatics analysis of differentially expressed genes and signaling pathways. Biomedicines. 2023; 11(4):1216.). DOI: https://doi.org/10.3390/biomedicines11041216
17. Arif R, Bukhari SA, Mustafa G, Ahmed S, Albeshr MF. Network pharmacology and experimental validation to explore the potential mechanism of Nigella sativa for the treatment of breast cancer. Pharmaceuticals. 2024; 17(5):1–23. DOI: https://doi.org/10.3390/ph17050617
18. Mir WR, Bhat BA, Kumar A, Dhiman R, Alkhanani M, Almilaibary A. Network pharmacology combined with molecular docking and in vitro verification reveals the therapeutic potential of Delphinium roylei Munz constituents on breast carcinoma. Front Pharmacol. 2023; 14(9):1–22. DOI: https://doi.org/10.3389/fphar.2023.1135898
19. Iqbal M, Hasanah N, Arianto AD, Aryati WD, Puteri MU, Saputri FC. Brazilin from Caesalpinia sappan L. as a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor: Pharmacophore-based virtual screening, in silico molecular docking, and in vitro studies. Adv Pharmacol Pharm Sci. 2023; 2023:5932315. DOI: https://doi.org/10.1155/2023/5932315
20. Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018; 46(W1):W363– W367. DOI: https://doi.org/10.1093/nar/gky473
21. Guo L, Wang J. GSScore : a novel graphormer-based shell-like scoring method for protein – ligand docking. 2024; 16(40): 201 DOI: https://doi.org/10.1093/bib/bbae201
22. Mohamed GA, Abdallah HM, Sindi IA, Ibrahim SRM, Alzain AA. Unveiling the potential of phytochemicals to inhibit nuclear receptor binding SET domain protein 2 for cancer: Pharmacophore screening, molecular docking, ADME properties, and molecular dynamics simulation investigations. PLoS One. 2024; 19(8):1–19. DOI: https://doi.org/10.1371/journal.pone.0308913
23. Munggari IP, Kurnia D, Deawati Y, Julaeha E. Current research of phytochemical, medicinal and non-medicinal uses of Uncaria gambir Roxb.: A review. Molecules. 2022; 27(19) :6551.. DOI: https://doi.org/10.3390/molecules27196551
24. Saxton JE. Alkaloids of Mitragyna and Related Genera. 1st ed. R. H. F. Manske, editor. New York: Academic Press; 1973. 7–22 p.
25. Auliana FR, Ifora I, Fauziah F. Phytochemical and Anti-Inflammatory of Uncaria gambir: A Review. Asian J Pharm Res Dev. 2022; 10(1):79–83. DOI: https://doi.org/10.22270/ajprd.v10i1.1077
26. Mat Saad MF, Goh HH, Rajikan R, Tuan Yusof TR, Baharum SN, Bunawan H. From phytochemical composition to pharmacological importance. Trop J Pharm Res. 2020;19(8):1767–73. DOI: https://doi.org/10.4314/tjpr.v19i8.28
27. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018; 46(W1):W257–63. DOI: https://doi.org/10.1093/nar/gky318
28. Yang K, Zeng L, Ge J. Exploring the Pharmacological Mechanism of danzhi xiaoyao powder on ER-positive breast cancer by a network pharmacology approach. Evidence-based Complement Altern Med. 2018; 2018(1): 5059743. DOI: https://doi.org/10.1155/2018/5059743
29. Erdogan F, Radu TB, Orlova A, Qadree AK, de Araujo ED, Israelian J. JAK-STAT core cancer pathway: An integrative cancer interactome analysis. J Cell Mol Med. 2022; 26(2):2049–2062. DOI: https://doi.org/10.1111/jcmm.17228
30. Chen SY, Fang CY, Su BH, Chen HM, Huang SC, Wu PT. Early growth response protein 1 exacerbates murine inflammatory bowel disease by transcriptional activation of matrix metalloproteinase 12. Biomedicines. 2024; 12(4):1–14. DOI: https://doi.org/10.3390/biomedicines12040780
31. Ren FJ, Cai XY, Yao Y, Fang GY. JunB: a paradigm for Jun family in immune response and cancer. Front Cell Infect Microbiol. 2023; 13(9):1–16. DOI: https://doi.org/10.3389/fcimb.2023.1222265
32. Ni Y, Low JT, Silke J, O’Reilly LA. Digesting the role of JAK-STAT and cytokine signaling in oral and gastric cancers. Front Immunol. 2022; 13(June):1–28. DOI: https://doi.org/10.3389/fimmu.2022.835997
33. Zhang Z, Richmond A, Yan C. Immunomodulatory properties of PI3K/AKT/mTOR and MAPK/MEK/ERK inhibition augment response to immune checkpoint blockade in melanoma and triple-negative breast cancer. Int J Mol Sci. 2022; 23(13) :7353. DOI: https://doi.org/10.3390/ijms23137353
34. Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR Pathway and its role in cancer therapeutics: Are we making headway? Front Oncol. 2022; 12(3):1–17. DOI: https://doi.org/10.3389/fonc.2022.819128
35. Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR. The PI3K-Akt-mTOR and associated signaling pathways as molecular drivers of immune-mediated inflammatory skin diseases: Update on therapeutic strategy using natural and synthetic compounds. Cells. 2023; 12(12) :1671. DOI: https://doi.org/10.3390/cells12121671
36. Mafi S, Mansoori B, Taeb S, Sadeghi H, Abbasi R, Cho WC. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment. Front Immunol. 2022; 12(2):1–19. DOI: https://doi.org/10.3389/fimmu.2021.774103
37. Stanciu S, Ionita-Radu F, Stefani C, Miricescu D, Stanescu-Spinu II, Greabu M. Targeting PI3K/AKT/mTOR signaling pathway in pancreatic cancer: From molecular to clinical aspects. Int J Mol Sci. 2022; 23(17):10132. DOI: https://doi.org/10.3390/ijms231710132
38. Mishra D, Mishra A, Nand Rai S, Vamanu E, Singh MP. Demystifying the role of prognostic biomarkers in breast cancer through integrated transcriptome and pathway enrichment analyses. Diagnostics. 2023; 13(6) :1142. DOI: https://doi.org/10.3390/diagnostics13061142
39. Min JK, Park HS, Lee YB, Kim JG, Kim J Il, Park JB. Cross-talk between Wnt signaling and Src tyrosine kinase. Biomedicines. 2022; 10(5). DOI: https://doi.org/10.3390/biomedicines10051112
40. Clusan L, Ferrière F, Flouriot G, Pakdel F. A basic review on estrogen receptor signaling pathways in breast cancer. Int J Mol Sci. 2023; 24(7):1–19. DOI: https://doi.org/10.3390/ijms24076834
41. Varisli L, Dancik GM, Tolan V, Vlahopoulos S. Critical roles of SRC-3 in the development and progression of breast cancer, rendering it a prospective clinical target. Cancers (Basel). 2023; 15(21):1–30. DOI: https://doi.org/10.3390/cancers15215242
42. Zhuang W, Ye T, Wang W, Song W, Tan T. CTNNB1 in neurodevelopmental disorders. Front Psychiatry. 2023; 14(3): 1143328. DOI: https://doi.org/10.3389/fpsyt.2023.1143328
43. Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J. Estrogen receptor signaling in breast cancer. Cancers (Basel). 2023; 15(19):1–28. DOI: https://doi.org/10.3390/cancers15194689
44. Fan FY, Sang LX, Jiang M, McPhee DJ. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules. 2017; 22(3). DOI: https://doi.org/10.3390/molecules22030484
45. Dutta S, Kumar HPP, Ramesh N, Middha SK. Systematic analysis of quercetin and its derivatives with special reference to anti-inflammatory property-based on network pharmacology. Plant Sci Today. 2022; 9(5):41–6. DOI: https://doi.org/10.14719/pst.1705
46. Iida M, Harari PM, Wheeler DL, Toulany M. Targeting AKT/PKB to improve treatment outcomes for solid tumors. Mutat Res- Fundam Mol Mech Mutagen [Internet]. 2020; 820(12):111690. DOI: https://doi.org/10.1016/j.mrfmmm.2020.111690
47. Duronio V. The life of a cell: Apoptosis regulation by the PI3K/PKB pathway. Biochem J. 2008; 415(3):333–44. DOI: https://doi.org/10.1042/BJ20081056
48. Maugeri A, Calderaro A, Patanè GT, Navarra M, Barreca D, Cirmi S. Targets involved in the anti-cancer activity of quercetin in breast, colorectal and liver neoplasms. Int J Mol Sci. 2023; 24(3). DOI: https://doi.org/10.3390/ijms24032952
49. Ji H, Li K, Xu W, Li R, Xie S, Zhu X. Prediction of the mechanisms by which quercetin enhances cisplatin action in cervical cancer: A network pharmacology study and experimental validation. Front Oncol. 2022; 11(1):1–14. DOI: https://doi.org/10.3389/fonc.2021.780387
50. Noor F, Qamar MTU, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network pharmacology approach for medicinal plants: Rev Assess Pharmaceut. 2022; 15(5):1–33. DOI: https://doi.org/10.3390/ph15050572
51. Yanming T, Xiaofeng L, Fang T, Marat T, Fumin X, Xi W. The potential mechanisms of catechins in tea. 2024; 13(17): 2685 DOI: https://doi.org/10.3390/foods13172685
52. Leclercq G, Haegel H, Schneider A, Giusti AM, Marrer-Berger E, Boetsch C. Src/lck inhibitor dasatinib reversibly switches off cytokine release and T cell cytotoxicity following stimulation with T cell bispecific antibodies. J Immunother Cancer. 2021; 9(7):1–13. DOI: https://doi.org/10.1136/jitc-2021-002582
53. Cecerska-Heryć E, Wiśniewska Z, Serwin N, Polikowska A, Goszka M, Engwert W. Can compounds of natural origin be important in chemoprevention? Anticancer properties of quercetin, resveratrol, and curcumin-A comprehensive review. Int J Mol Sci. 2024; 25(8) :4505.. DOI: https://doi.org/10.3390/ijms25084505
54. Saini H, Gupta PK, Mahapatra AK, Rajagopala S, Tripathi R, Nesari T. Deciphering the multi-scale mechanism of herbal phytoconstituents in targeting breast cancer: a computational pharmacological perspective. Sci Rep. 2024; 14(1):23795. DOI: https://doi.org/10.1038/s41598-024-75059-z


