Chemical Profiling, In Vivo Antioxidant Effect and Antimutagenic Evaluation of Melilotus indicus (L.) All. Extracts

doi.org/10.26538/tjnpr/v5i3.19

Authors

  • Nermin A. Ragab Pharmacognosy Department, National Research Centre, 33El Bohouth St., Dokki, Giza 12622, Egypt
  • Elsayed A. Aboutabl Faculty of Pharmacy, Cairo University, Kasr-el-Aini Street, 11562, Cairo, Egypt. 3Phytochemistry and plant systematics Department, National Research
  • Mona M. Marzouk Phytochemistry and plant systematics Department, National Research Centre, 33El Bohouth St., Dokki, Giza 12622, Egypt
  • Ali M. El Halawany Faculty of Pharmacy, Cairo University, Kasr-el-Aini Street, 11562, Cairo, Egypt.
  • Ayman A. Farghaly Genetics and Cytology Department, National Research Centre, 33El Bohouth St., Dokki, Giza 12622, Egypt
  • Amany A. Sleem Pharmacology Department, National Research Centre, 33El Bohouth St., Dokki, Giza 12622, Egypt
  • Salma A. El Sawi Pharmacognosy Department, National Research Centre, 33El Bohouth St., Dokki, Giza 12622, Egypt

Keywords:

Melilotus indicus, Phytoconstituents, Antioxidant, Antidiabetic, Antimutagenicity

Abstract

Melilotus indicus (L.) All. is used as a vegetable and known to possess valuable remedial uses. The whole plant was extracted using 70% methanol to give the total aqueous methanol extract (AME) which was defatted with petroleum ether to give petroleum ether extract (PEE) and defatted AME (DAME). PEE was analyzed by GC-MS and LC-ESI-MS. In addition, the chromatographic investigation of DAME led to the isolation of thirteen flavonoids and one phenolic acid. Their structures were elucidated through chemical and spectroscopic analysis (ESIMS, UV and NMR). Prospective activity of AME, PEE and DAME against alloxan-induced oxidative stress, diabetes and mutagenic effect in male rats was investigated. GC-MSanalysis detected thirty-five non-polar compounds while the LC-ESI-MS revealed the presence of additional eight metabolites. AME and PEE significantly (P < 0.01) increased serum GSH content in rats (35.3 ± 0.8 and 34.9 ± 0.6 mmol/L) compared to diabetic rats (21.8± 0.3) and vitamin E (36.2 ± 1.1). Also, AME and DAME revealed a significant acute anti-hyperglycemic effect potentiated after 4 weeks of treatment with blood glucose levels of 96.9 ± 6.2 and 98.7 ±6.1 mg/dL, respectively, compared to diabetic rats (263.4 ± 7.8) and Metformin group (81.9 ± 2.4) at P < 0.01. Additionally, AME revealed a significant inhibitory effect on the irregularity of bone marrow cells and sperm abnormalities appeared from higher inhibitory indices which were 75 and 76, respectively.

References

Kaur S, Sharma A, Bedi PMS. Bioactivity Guided Isolation, Characterization and Quantification of an Anxiolytic Constituent - Kaempferol, from Melilotus officinalis Aerial Parts. J Biol Act Prod from Nat. 2017; 7(5):379-390.

Cornara L, Xiao J, Burlando B. Therapeutic Potential of Temperate Forage Legumes: A Review. Crit Rev Food Sci Nutr. 2016; 56(November):S149-S161.

Bolus L. Flora of Egypt checklist. Cairo, Egypt: Al Hadara Publishing; 2009.

Yadava RN and Jain S. A new bioactive flavone glycoside from the seeds of Melilotus indica All. J Asian Nat Prod Res. 2005; 7(4):595-599.

Qureshi SJ, Khan MA, Ahmad M. A survey of useful medicinal plants of Abbottabad in northern Pakistan. Trakia J Sci. 2008; 6(4):39-51.

Naz R, Ayub H, Nawaz S, Islam ZU, Yasmin T, Bano A, Wakeel A, Zia S, Roberts TH. Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement Altern Med. 2017; 17(1):1-13.

Saxena Vk and Nigam S. A novel prenylated pterocarpan from Melilotus indica. Fitoterapia. 1997; 68:403.

Saxena Vk and Nigam S. A methylenedioxypterocarpan from Melilotus indica. Fitoterapia. 1997; 68:343.

El-Sayed NH, Ishak MS, Mabry TJ. Flavonoids of Melilotus indica. Asian J Chem. 1997; 9(3):551.

Ahmed SA-K and Al Refai M. Chemical constituents and cytotoxic activities of the extracts of Melilotus indicus. Eur J Chem. 2014; 5(3):503-506.

Mahmoud YSY. A Pharmacognostical Study of Melilotus indicus (L.) All. Growing in Egypt. Master thesis, Faculty of Pharmacy, Cairo, Egypt; 2019; 19.

Ahmed D, Younas S, Mughal QMA. Study of alpha-amylase and urease inhibitory activities of Melilotus indicus (Linn.) All. Pak J Pharm Sci. 2014; 27(1):57-61.

Lu SC. Regulation of hepatic glutathione synthesis. Semin Liver Dis. 1999; 18(4):331-343.

Alabi OA, Oladimeji LR, Sorungbe AA, Adeoluwa YM. Oxidative Stress Induced DNA Damage and Reproductive Toxicity in Male Albino Mice Orally Exposed to Sorbitol. Ann Sci Technol. 2019; 4(2):46-58.

Gupta C, Vikram A, Tripathi DN, Ramarao P, Jena GB. Antioxidant and antimutagenic effect of quercetin against DEN induced hepatotoxicity in rat. Phyther Res. 2010;24:119-128.

Tsuda K, Sakai K, Tanabe K, Kishida Y. Isolation of 22-dehydrocholestrol from Hypnea japonica. J Am Chem Soc. 1960; 82:1442-1443.

Finar IL. Organic Chemistry. In: 5th ed. London: Longmans Green and Co. Ltd. 1967; 212.

Salem MA, Farid MM, El-Shabrawy M, Mohammed R, Hussein SR, Marzouk MM. Spectrometric analysis, chemical constituents and cytotoxic evaluation of Astragalus sieberiDC. (Fabaceae). Sci African. 2020; 7:e00221. 19. Marzouk MM, Al-Nowaihi ASM, Kawashty SA, Saleh

NAM. Chemosystematic studies on certain species of the family Brassicaceae (Cruciferae) in Egypt. Biochem Syst Ecol. 2010; 38(4):680-685.

Marzouk MM, Hussein SR, Elkhateeb A, Farid MM, Ibrahim LF, Abdbrahimel-Hameed ES. Phenolic profiling of Rorippa palustris (L.) Besser (Brassicaceae) by LC-ESI-MS: Chemosystematic significance and cytotoxic activity. Asian Pacific J Trop Dis. 2016; 6(8):633-637.

Paget G and Berne’s E. Toxicity Tests in Evaluation of Drug Activities “cited in the laboratory rat.” Laurence DR, Bacharach AL, editors. London: Academic Press; 1964; 135-160.

Karber G. Beitra zur kovecktiven Behandlung pharmakologischer Reihenversucbe. Arch Exp Pathol und Pharmakologie. 1931; 162:480-483.

Eliasson S and Samet J. Alloxan induced neuropathies lipid change in nerve and root fragments. Life Sci. 1969; 81:493-498.

Kassem MES, Shoela S, Marzouk MM, Sleem AA. A sulphated flavone glycoside from Livistona australis and its antioxidant and cytotoxic activity. Nat Prod Res. 2012; 26(15):1381-1387.

Beutler E, Duron O, Kelly B. Improved Method for the Determination of Blood Glutathione. J Lab Clin Med. 1963;61:882-888.

Ragheb AY, Kassem MES, El-Sherei MM, Marzouk MM, Mosharrafa SA, Saleh NAM. Morphological, phytochemical and anti-hyperglycemic evaluation of Brachychiton populneus. Rev Bras Farmacogn. 2019; 29(5):559-569.

Yosida TH and Amano K. Autosomal polymorphism in laboratory bred and wild Norway rats, Rattus norvegicus. Chromosoma. 1965; 16:658-667.

Wyrobek AJ and Bruce WR. Chemical induction of spermshape abnormalities in mice. Proc Natl Acad Sci. 1975; 72:4425-4429.

Madrigal-Bujaidar E, Diaz Barriga S, Cassani M, Márquez P, Revuelta P. In vivo and in vitro antigenotoxic effect of nordihydroguaiaretic acid against SCEs induced by methyl methanesulfonate. Mutat Res. 1998; 419:163-168.

Adams RP. Identification of Essential oil Compounds by Gas Chromatography/Mass Spectroscopy. Carol stream, Illinois, USA.: Allured Publishing Corporation; 1995.

Adams RP. Identification of Essential oils by Ion Trap Mass spectroscopy. New York: Academic Press, INC; 1989.

El-Sherei MM, Ragheb AY, Mosharrafa SA, Marzouk MM, Kassem MES, Saleh NAM. Pterygota alata (Roxb.) R. Br.: Chemical constituents, anti-hyperglycemic effect and antioxidative stress in alloxan-induced diabetic rats. J Mater Environ Sci. 2018; 9(1):245-255.

Diantini A, Subarnas A, Lestari K, Halimah E, Susilawati Y, Supriyatna, Julaeha E, Achmad TH, Suradji EW, Yamazaki C, Kobayashi K, Koyama H, Abdulah R. Kaempferol-3-Orhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation

through activation of the caspase cascade pathway. Oncol Lett. 2012; 3(5):1069-1072.

Kawashty SA, Hussein SR, Marzouk MM, Ibrahim LF, Helal MMI, El Negomy SIM. Flavonoid constituents fromMorettia philaena (Del.) DC. and their antimicrobial activity.J Appl Sci Res. 2012; 8(3):1484-1489.

Esposito A, Fiorentino A, D’Abrosca B, Izzo A, Cefarelli G, Golino A, Monaco, P. Potential allelopathic interference of Melilotus neapolitana metabolites on three coexisting species of Mediterranean herbaceous plant community. J Plant Interact. 2008; 3(3):199-210.

Kite GC, Stoneham CA, Veitch NC. Flavonol tetraglycosides and other constituents from leaves of Styphnolobium japonicum (Leguminosae) and related taxa. Phytochem. 2007; 68(10):1407-1416.

Ilhan M, Ali Z, Khan IA, Taştan H, Küpeli Akkol E. The regression of endometriosis with glycosylated flavonoids isolated from Melilotus officinalis (L.) Pall. in an endometriosis rat model. Taiwan J Obstet Gynecol. 2020; 59(2):211-219.

Ilhan M, Ali Z, Khan IA, Küpeli Akkol E. A new isoflavane- 4-ol derivative from Melilotus officinalis (L.) Pall. Nat Prod Res. 2019; 33(13):1856-1861.

Macías FA, Simonet AM, Galindo JCG, Castellano D. Bioactive phenolics and polar compounds from Melilotus messanensis. Phytochem. 1999; 50(1):35-46.

Yao H, Duan J, Zhang C, Li Y, Liu C. Coumaric Acid Glucosides from the Chinese Fern Polypodium hastatum.Chem Nat Compd. 2016; 52(4):669-671.

Thiele B, Stein N, Oldiges M, Hofmann D. Direct analysis of underivatized amino acids in plant extracts by LC-MS-MS. Vol. 828, Amino Acid Analysis. Totowa, NJ: Humana Press; 2012; 317-328.

Marzouk MM, Ibrahim LF, El-Hagrassi AM, Fayed DB, Elkhateeb A, Abdel-Hameed ESS, Hussein SR. Phenolic profiling and anti-Alzheimer’s evaluation of Eremobiumaegyptiacum. Adv Tradit Med. 2020; 20:233-241.

Iftikhar H, Ahmed D, Qamar MT. Study of Phytochemicals of Melilotus indicus and Alpha-Amylase and Lipase Inhibitory Activities of Its Methanolic Extract and Fractions in Different Solvents. ChemistrySelect. 2019; 4(26):7679-7685.

Keshari AK, Kumar G, Kushwaha PS, Bhardwaj M, Kumar P, Rawat A, Kumar D, Prakash A, Ghosh B, Saha S. Isolated flavonoids from Ficus racemosa stem bark possess antidiabetic, hypolipidemic and protective effects in albino Wistar rats. J Ethnopharmacol. 2016; 181:252-262.

Brahmachari G. Bio-flavonoids with promising anti- diabetic potentials : A critical survey. Oppor Chall Scope Nat Prod Med Chem - Res Signpost. 2011; 661(2):187-212.

Panda S and Kar A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. BioFactors. 2007; 31(3-4):201-210.

Da Silva D, Casanova LM, Marcondes MC, Espindola-Netto JMH, Paixão LP, De Melo GO, Zancan P, Sola‐Penna M, Costa SS. Antidiabetic activity of Sedum dendroideum: Metabolic enzymes as putative targets for the bioactive flavonoid kaempferitrin. IUBMB Life. 2014; 66(5):361-370.

Matsuda H, Morikawa T, Toguchida I, Yoshikawa M. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharm Bull. 2002; 50(6):788-795.

Farghaly AA and Hassan ZM. Methanolic extract of Lupinus Termis ameliorates DNA damage in alloxan-induced diabetic mice. Eur Rev Med Pharmacol Sci. 2012; 16(SUPPL.3):126-132.

El Souda SS, Mohammed RS, Marzouk MM, Fahmy MA, Hassan ZM, Farghaly AA. Antimutagenicity and phytoconstituents of Egyptian Plantago albicans L. AsianPacific J Trop Dis. 2014; 4(2):S946-S951.

Blasiak J, Arabski M, Krupa R, Wozniak K, Zadrozny M, Kasznicki J, Zurawska M, Drzewoski J. DNA damage and repair in type 2 diabetes mellitus. Mutat Res - Fundam Mol Mech Mutagen. 2004; 554(1-2):297-304. Dennettia tripetalafruits. J Med Arom Plant Sci. 2005; 27:496-498.

Downloads

Published

2021-03-01

How to Cite

Ragab, N. A., Aboutabl, E. A., Marzouk, M. M., El Halawany, A. M., Farghaly, A. A., Sleem, A. A., & El Sawi, S. A. (2021). Chemical Profiling, In Vivo Antioxidant Effect and Antimutagenic Evaluation of Melilotus indicus (L.) All. Extracts: doi.org/10.26538/tjnpr/v5i3.19. Tropical Journal of Natural Product Research (TJNPR), 5(3), 534–542. Retrieved from https://tjnpr.org/index.php/home/article/view/738