Calcium-Based Nutraceutical Strategy to Reverse Aging-Associated Organ Injury

Main Article Content

Abidemi T. Eludire
Aniebiet U. Essien
Emmanuel O. Odungide
Damilola O. Peters
Israel S. Afolabi

Abstract

Calcium is an essential nutrient that affects cellular communication. This study aimed to investigate the protective and therapeutic effects of calcium-based diets on organ integrity in female rats exposed to excess monosodium glutamate (MSG). Female Wistar rats were divided into five groups of nine rats each, pre-fed in one phase and post-fed in another phase with calcium-based diets; calcium lactate (9.2 µL/g body weight) and calcium-D-glucarate (CDG, 35 mg/kg body weight), along with their combination (calcium lactate and calcium-D-glucarate) before and after the intraperitoneal administration of excess monosodium glutamate MSG (750 mg/kg body weight) for 70 days. Serum, liver, and small intestinal biochemical parameters were measured at 14, 28, and 42 days using Enzyme-linked Immunosorbent Assay (ELISA) and spectrophotometric techniques. The effects of calcium-based treatment on the organ integrity were also evaluated by histological examination. The 14-day pre-administered calcium diet, 28-day individually pre-administered calcium-D-glucarate (CDG), and 14-day post-administered combined diets (calcium and calcium-D-glucarate) significantly (p<0.05) reduced serum alanine transferase activities and estrogen levels. The pre-treated and post-administered calcium-D-glucarate (CDG) significantly (p<0.05) reduced β-glucuronidase activity. Additionally, pre-administered calcium lactate and the combined diet calcium and calcium-D-glucarate significantly (p<0.05) reduced lactate dehydrogenase (LDH) activity. However, post-administered calcium diet and calcium-D-glucarate (CDG) significantly (p<0.05) increased lactate dehydrogenase LDH activity during the first 28 days. The calcium and calcium-D-glucarate (CDG) diets histologically exhibited differential capacities to restore the integrity of damaged organs. These findings therefore suggest that calcium lactate and calcium-D-glucarate (CDG) supplementation are effective strategies for managing organ damage and age-related conditions.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Calcium-Based Nutraceutical Strategy to Reverse Aging-Associated Organ Injury. (2025). Tropical Journal of Natural Product Research , 9(9), 4182 – 4200. https://doi.org/10.26538/tjnpr/v9i9.15

References

1.Beto JA. The role of calcium in human aging. Clin Nutr Res. 2015; 4(1):1–8. Doi: 10.7762/cnr.2015.4.1.1.

2.Ridderinkhof KR and Krugers HJ. Horizons in human aging neuroscience: from normal neural aging to mental (Fr)agility. Front Hum Neurosci. 2022; 16:815759. Doi: 10.3389/fnhum.2022.815759.

3.Ojo ES and Tischkau SA. The role of AhR in the hallmarks of brain aging: friend and foe. Cells. 2021; 10(10):2729. Doi: 10.3390/cells10102729.

4.de Magalhães JP. Distinguishing between driver and passenger mechanisms of aging. Nat Genet. 2024; 56(2):204–211. Doi: 10.1038/s41588-023-01627-0.

5.Desa U. World population ageing 2019 (ST/ESA/SER.A/444). New-York. Department of Economic and Social Affairs of the United Nations. 2020.

6.Calder PC, Carding SR, Christopher G, Kuh D, Langley-Evans SC, Mcnulty H. A holistic approach to healthy ageing: how can people live longer, healthier lives? J Hum Nutr Diet. 2018; 31(4):439–450. Doi: 10.1111/jhn.12566.

7.Rippe JM. Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease. Am J Lifestyle Med. 2019; 13(2):204–212. Doi: 10.1177/1559827618812395.

8.Abbott A. Reduced-calorie diet shows signs of slowing ageing in people. Nature. 2018; 555(7658):570–571. Doi: 10.1038/d41586-018-03431-x.

9.Kain HS, Glennon EKK, Vijayan K, Arang N, Douglass AN, Fortin CL, Zuck M, Lewis AJ, Whiteside SL, Dudgeon DR, Johnson JS, Aderem A, Stevens KR, Kaushansky. Liver stage malaria infection is controlled by host regulators of lipid peroxidation. Cell Death Differ. 2020; 27(1):44–54. Doi: 10.1038/s41418-019-0338-1.

10.Niranjan V, Uttarkar A, Dadi S, Dawane A, Vargheese A, H G JK, Makarla U, Ramu VS. Stress-induced detoxification enzymes in rice have broad substrate affinity. ACS Omega. 2021; 6(4):3399–3410. Doi: 10.1021/acsomega.0c05961.

11.Phengnuam T and Suntornsuk W. Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation. J Biosci Bioeng. 2013;115(2)168-172. Doi:10.1016/j.jbiosc.2012.08.017.

12.Das JK, Salam RA, Mahmood SB, Moin A, Kumar R, Mukhtar K, Lassi ZS, Bhutta ZA. Food fortification with multiple micronutrients: impact on health outcomes in general population. Cochrane Database Syst Rev. 2019; 12(12):CD011400. Doi: 10.1002/14651858.CD011400.pub2.

13.Ayyadurai VAS, Deonikar P, Fields C. Mechanistic understanding of d-glucaric acid to support liver detoxification essential to muscle health using a computational systems biology approach. Nutrients. 2023; 15(3):733. Doi: 10.3390/nu15030733.

14.Yang W, Zhou G, Zou S, Yang W, Liu A, Sun S, Xie B. Metabonomics of d-glucaro-1,4-lactone in preventing diethylnitrosamine-induced liver cancer in rats. Pharm Biol. 2018; 56(1):643–648. Doi: 10.1080/13880209.2018.1525414.

15.Gorvin CM. Genetic causes of neonatal and infantile hypercalcaemia. Pediatr Nephrol. 2022; 37(2):289–301. Doi: 10.1007/s00467-021-05082-z.

16.Stokes VJ, Nielsen MF, Hannan FM, Thakker RV. Hypercalcemic disorders in children. J Bone Miner Res. 2017; 32(11):2157–2170. Doi: 10.1002/jbmr.3296.

17.Lietman SA, Germain-Lee EL, Levine MA. Hypercalcemia in children and adolescents. Curr Opin Pediatr. 2010; 22(4):508–515. Doi: 10.1097/MOP.0b013e32833b7c23.

18.Roizen JD, Shah V, Levine MA, Carlow DC. Determination of reference intervals for serum total calcium in the vitamin D-replete pediatric population. J Clin Endocrinol Metab. 2013; 98(12): E1946–1950. Doi: 10.1210/jc.2013-3105.

19.Galli F, Bonomini M, Bartolini D, Zatini L, Reboldi G, Marcantonini G, Gentile G, Sirolli V, Pietro ND. Vitamin E (alpha-tocopherol) metabolism and nutrition in chronic kidney disease. Antioxidants (Basel). 2022; 11(5):989. Doi: 10.3390/antiox11050989.

20.Njei B, Al-Ajlouni YA, Ameyaw P, Njei LP, Boateng S. Role of ammonia and glutamine in the pathogenesis and progression of metabolic dysfunction-associated steatotic liver disease: A systematic review. J Gastroenterol Hepatol. 2024; 39(9):1788–1808. Doi: 10.1111/jgh.16603.

21.Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang L. Energy metabolism in health and diseases. Signal Transduct Target Ther. 2025; 10(1):69. Doi: 10.1038/s41392-025-02141-x.

22.Xu R, Kiarie EG, Yiannikouris A, Sun L, Karrow NA. Nutritional impact of mycotoxins in food animal production and strategies for mitigation. J Anim Sci Biotechnol. 2022; 13(1):69. Doi: 10.1186/s40104-022-00714-2.

23.Anand S and Mande SS. Host-microbiome interactions: Gut-Liver axis and its connection with other organs. NPJ Biofilms Microbiomes. 2022; 8(1):89. Doi: 10.1038/s41522-022-00352-6.

24.Paulusma CC, Lamers WH, Broer S, Van De Graaf SFJ. Amino acid metabolism, transport and signalling in the liver revisited. Biochem Pharmacol. 2022; 201:115074. Doi: 10.1016/j.bcp.2022.115074.

25.Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron absorption: factors, limitations, and improvement methods. ACS Omega. 2022; 7(24):20441–20456. Doi: 10.1021/acsomega.2c01833.

26.Sensoy I. A review on the food digestion in the digestive tract and the used in vitro models. Curr Res Food Sci. 2021; 4:308–319. Doi: 10.1016/j.crfs.2021.04.004.

27.Saleem GN, Gu R, Qu H, Bahar Khaskheli G, Rashid Rajput I, Qasim M, Chen X. Therapeutic potential of popular fermented dairy products and its benefits on human health. Front Nutr. 2024; 11:1328620. Doi: 10.3389/fnut.2024.1328620.

28.Deluque AL, Dimke H, Alexander RT. Biology of calcium homeostasis regulation in intestine and kidney. NDT. 2025; 40(3):435–445. Doi: 10.1093/ndt/gfae204.

29.Wongdee K, Rodrat M, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Factors inhibiting intestinal calcium absorption: hormones and luminal factors that prevent excessive calcium uptake. J Physiol Sci. 2019; 69(5):683–696. Doi: 10.1007/s12576-019-00688-3.

30.Fleet JC. Vitamin D-mediated regulation of intestinal calcium absorption. Nutrients. 2022; 14(16):3351. Doi: 10.3390/nu14163351.

31.Ramachandra MS, Rao AS, Rani SS. Amelioration of CCl4 induced liver injury in albino rats by antioxidant rich leaf extract of Biophytum sensitivum. L. Int J Pharm Biol Sci. 2019; 9(2):634–640.

32.Oloyede OI, Afolabi OB, Babatunde OE, Adegboro AG, Ogunkorode DO. Cytoprotective potential of the aqueous extract from Bridelia ferruginea stem bark against experimental cadmium-induced hepato-renal toxicity in Wistar rat. Comp Clin Pathol. 2022; 31:967–978.

33.Akinboro A, Adedosu OT, Badmus JA, Adegbola PI, Abubakar MY, James RO, Aborisade A. Aspalathus linearis extract ameliorate haematological disorder, dyslipidaemia and tissue toxicity associated with arsenic exposure in Rats. Phytomed Plus. 2022; 2(4):100171 Doi: 10.1016/j.phyplu.2021.100171.

34.Mekkawy AM, Ahmed YH, Khalaf AAA, El-Sakhawy MA. Ameliorative effect of Nigella sativa oil and vitamin C on the thyroid gland and cerebellum of adult male albino rats exposed to monosodium glutamate (histological, immunohistochemical and biochemical studies). Tissue Cell. 2020; 66:101391. Doi: 10.1016/j.tice.2020.101391.

35.Vega-Muñoz I, Duran-Flores D, Fernández-Fernández ÁD, Heyman J, Ritter A, Stael S. Breaking bad news: dynamic molecular mechanisms of wound response in plants. Front Plant Sci. 2020; 11:610445. Doi: 10.3389/fpls.2020.610445.

36.Shanmukhan AP, Mathew MM, Radhakrishnan D, Aiyaz M, Prasad K. Regrowing the damaged or lost body parts. Curr Opin Plant Biol. 2020; 53:117–127. Doi: 10.1016/j.pbi.2019.12.007.

37.Pinotsis N, Zielinska K, Babuta M, Arolas JL, Kostan J, Khan MB, Schreiner C, Salmazo A, Ciccarelli L, Puchinger M, Gkougkoulia EA, Almeida Ribeiro E, Marlovits TC, Bhattacharya A, Carugo KD. Calcium modulates the domain flexibility and function of an alpha-actinin similar to the ancestral alpha-actinin. Proc Natl Acad Sci. 2020; 117(36):22101–22112. Doi: 10.1073/pnas.1917269117.

38.Kölling M, Kumari P, Bürstenbinder K. Calcium- and calmodulin-regulated microtubule-associated proteins as signal-integration hubs at the plasma membrane-cytoskeleton nexus. J Exp Bot. 2019; 70(2):387–396. Doi: 10.1093/jxb/ery397.

39.Ranty B, Aldon D, Galaud JP. Plant calmodulins and calmodulin-related proteins: multifaceted relays to decode calcium signals. Plant Signal Behav. 2006; 1(3):96–104. Doi: 10.4161/psb.1.3.2998.

40.Yang CF and Tsai WC. Calmodulin: the switch button of calcium signaling. Tzu Chi Med J. 2022; 34(1):15–22. Doi: 10.4103/tcmj.tcmj_285_20.

41.Junho CVC, Caio-Silva W, Trentin-Sonoda M, Carneiro-Ramos MS. An overview of the role of calcium/calmodulin-dependent protein kinase in cardiorenal syndrome. Front Physiol. 2020; 11:735. Doi: 10.3389/fphys.2020.00735.

42.Dai C, Lee Y, Lee IC, Nam HG, Kwak JM. Calmodulin 1 regulates senescence and ABA response in Arabidopsis. Front Plant Sci. 2018; 9:803. Doi: 10.3389/fpls.2018.00803.

43.Afolabi IS and Oloyede OB. Biochemical response of sweet potato to bemul-wax coating combined with calcium chloride treatment during ambient storage. Afr J Biotechnol. 2011; 10(14):2724–2732. Doi: 10.5897/AJB10.1587.

44.Singh S, Dodt J, Volkers P, Hethershaw E, Philippou H, Ivaskevicius V, Imhof D, Johannes Oldenburg J, Biswas A. Structure functional insights into calcium binding during the activation of coagulation factor XIII A. Sci Rep. 2019; 9(1):11324. Doi: 10.1038/s41598-019-47815-z.

45.Erickson JR and Echeverri K. Learning from regeneration research organisms: the circuitous road to scar free wound healing. Dev Biol. 2018; 433(2):144–154. Doi: 10.1016/j.ydbio.2017.09.025.

46.Kawai K, Larson BJ, Ishise H, Carre AL, Nishimoto S, Longaker M, Lorenz HP. Calcium-based nanoparticles accelerate skin wound healing. PLOS One. 2011; 6(11):e27106. Doi: 10.1371/journal.pone.0027106.

47.Richter DM, Ku JC, Keckler KE, Burke LR, Abd GM, Li Y. Autologous blood clots: a natural biomaterial for wound healing. Front Mater. 2023; 10: 1250013. Doi: 10.3389/fmats.2023.1250013.

48.Subramaniam T, Fauzi MB, Lokanathan Y, Law JX. The role of calcium in wound healing. Int J Mol Sci. 2021; 22(12):6486. Doi: 10.3390/ijms22126486.

49.Wang H, Xu Z, Li Q, Wu J. Application of metal-based biomaterials in wound repair. ENGREG. 2021; 2(8):137–153. Doi: 10.1016/j.engreg.2021.09.005.

50.Muire PJ, Mangum LH, Avila JJ, Lofgren AL, Wenke JC. Single dose of anti-high mobility group box 1 protein (HMGB-1) neutralizing antibody ameliorates dysregulated inflammation and restores fracture healing in a polytrauma rat (Rattus norvegicus) model. J Immunol. 2020; 204(1 Suppl):144.7.

51.Peng W, Luan X, Zhang H. Apoptosis induction/suppression: A feasible approach for natural products to treatment of diseases. Front Pharmacol. 2022; 13:923562. Doi: 10.3389/fphar.2022.923562.

52.Meng J, Li Y, Sun F, Feng W, Ye H, Tian T, Lei M. Salidroside alleviates LPS-induced liver injury and inflammation through SIRT1− NF- κB pathway and NLRP3 inflammasome. Iran J Basic Med Sci. 2024; 27(3):297–303. Doi: 10.22038/IJBMS.2023.69401.15124.

53.Afolabi IS, Nwachukwu IC, Ezeoke CS, Woke RC, Adegbite OA, Olawole TD, Martins OC. Production of a new plant-based milk from Adenanthera pavonina seed and evaluation of its nutritional and health benefits. Front Nutr. 2018; 5:9. Doi: 10.3389/fnut.2018.00009.

54.Steven PEE, Udedi SC, Ude CM. Effects of Spondias mombin and Aspilia africana aqueous extracts on rats with monosodium glutamate-induced leiomyoma. Cross Curr Int J Med Biosci. 2019; 1(1):26–32. Doi: 10.36344/ccijmb.2019.v01i01.005.

55.Gornall AG, Bardawill CJ, David MM. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949; 177(2):751–766. Doi: 10.1016/S0021-9258(18)57021-6.

56.Henry RJ, Winkelman JW, Cannon DC. Clinical chemistry: principle and technique. Clin Chem. 1974; 21:273–274.

57.Schmidt E and Schmidt FW. Release of enzymes from the liver. Nature. 1967; 213:1125–1126. Doi: 10.1038/2131125a0.

58.Reitman S and Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957; 28(1):56–63. Doi: 10.1093/ajcp/28.1.56.

59.Napoli N, Thompson J, Civitelli R, Armamento-Villareal RC. Effects of dietary calcium compared with calcium supplements on estrogen metabolism and bone mineral density. Am J Clin Nutr. 2007; 85(5):1428–1433. Doi: 10.1093/ajcn/85.5.1428.

60.Jiao L, Machuki JO, Wu Q, Shi M, Fu L, Adekunle AO, Tao X, Xu C, Hu X, Yin Z, Sun H. Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2020; 318(4):H820-H829. Doi: 10.1152/ajpheart.00734.2019.

61.Tran QK. Reciprocality between estrogen biology and calcium signaling in the cardiovascular system. Front Endocrinol (Lausanne). 2020; 11:568203. Doi: 10.3389/fendo.2020.568203.

62.Marsh NM, Macewen MJS, Chea J, Kenerson HL, Kwong AA, Locke TM, Miralles FJ, Tanmay Sapre T, Gozali N, Hart ML, Bammler TK, MacDonald JW, Sullivan LB, Gokcumen EA, Ong SE, Scott JD, Yeung RS, Sancak Y. Mitochondrial calcium signaling regulates branched-chain amino acid catabolism in fibrolamellar carcinoma. BioRxiv. 2024; 2024.05.27.596106. Doi: 10.1101/2024.05.27.596106.

63.Rossi A, Pizzo P, Filadi R. Calcium, mitochondria and cell metabolism: A functional triangle in bioenergetics. Biochem Biophys Acta Mol Cell Res. 2019; 1866(7):1068–1078. Doi: 10.1016/j.bbamcr.2018.10.016.

64.Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, et al. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacol. 2021; 196:108719. Doi: 10.1016/j.neuropharm.2021.108719.

65.Eprintsev AT, Anokhina GB, Shakhov ZN, Moskvina PP, Igamberdiev AU. The role of glutamate metabolism and the GABA shunt in bypassing the tricarboxylic acid cycle in the light. Int J Mol Sci. 2024; 25(23):12711. Doi: 10.3390/ijms252312711.

66.Wang J, Zhang Y, Tian N, Ya D, Yang J, Jiang Y, Li X, Lin X, Yang B, Li Q. Mechanisms of glutamate metabolic function and dysfunction in vascular dementia. Neuroprotection. 2024; 2:33–48. Doi: 10.1002/nep3.32.

67.Wu J, Liu J, Lapenta K, Desrouleaux R, Li MD, Yang X. Regulation of the urea cycle by CPS₁ O-GlcNAcylation in response to dietary restriction and aging. J Mol Cell Biol. 2022; 14(3):mjac016. Doi: 10.1093/jmcb/mjac016.

68.Airaodion AI, Okoroukwu VN, Ogbuagu U, Ekenjoku JA. Effect of monosodium glutamate on body weight and alanine aminotransferase activity in Wistar rats. Int Res J Gastroenterol Hepatol. 2019; 2:41–48.

69.Arruda AP and Hotamisligil GS. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 2015; 22(3):381–397. Doi: 10.1016/j.cmet.2015.06.010.

70.Pu F, Chen N, Xue S. Calcium intake, calcium homeostasis and health. Food Sci Hum Wellness. 2016; 5:8–16. Doi: 10.1016/j.fshw.2016.01.001.

71.Karmaus AL, Mansouri K, To KT, Blake B, Fitzpatrick J, Strickland J, Patlewicz G, Allen D, Casey W, Kleinstreuer N. Evaluation of variability across rat acute oral systemic toxicity studies. Toxicol Sci. 2022; 188(1):34–47. Doi: 10.1093/toxsci/kfac042.

72.Wawrzyniak N, Gramza-Michałowska A, Kołodziejski P, Suliburska J. Effect of calcium lactate in standard diet on selected markers of oxidative stress and inflammation in ovariectomized rats. Open Chem. 2022; 20(1):1357–1364. Doi: 10.1515/chem-2022-0236.

73.Audiyananda D, Yuwono HS, Adnan A. Lethal dose of calcium bentonite in Wistar rats. Althea Med J. 2021; 8(2). Doi: 10.15850/amj.v8n2.2227.

74.Farombi EO and Onyema OO. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Hum Exp Toxicol. 2006; 25(5):251–259. Doi: 10.1191/0960327106ht621oa.

75.Sengupta M, Griffett K, Flaveny CA, Burris TP. Inhibition of hepatotoxicity by a LXR inverse agonist in a model of alcoholic liver disease. ACS Pharmacol Transl Sci. 2018; 1(1):50–60. Doi: 10.1021/acsptsci.8b00003.

76.Marchingo JM and Cantrell DA. Protein synthesis, degradation, and energy metabolism in T cell immunity. Cell Mol Immunol. 2022; 19(3):303–315. Doi: 10.1038/s41423-021-00792-8.

77.Ammendolia DA, Bement WM, Brumell JH. Plasma membrane integrity: implications for health and disease. BMC Biol. 2021; 19(1):71. Doi: 10.1186/s12915-021-00972-y.

78.Oyebode OT, Obiekwe ME, Olorunsogo OO. Protective effects of alpha stone on monosodium glutamate-induced uterine hyperplasia in female Wistar rats. J Ayurveda Integr Med. 2020; 11(3):217–223. Doi: 10.1016/j.jaim.2019.05.001.

79.O’Day DH. Calmodulin binding proteins and Alzheimer’s disease: biomarkers, regulatory enzymes and receptors that are regulated by calmodulin. Int J Mol Sci. 2020; 21(19):7344. Doi: 10.3390/ijms21197344.

80.Roman-Ramos R, Almanza-Perez JC, Garcia-Macedo R, Blancas-Flores G, Fortis-Barrera A, Jasso EI, Lorenzana MG, Campos-Sepulveda AE, Cruz M, Alarcon-Aguilar FJ. Monosodium glutamate neonatal intoxication associated with obesity in adult stage is characterized by chronic inflammation and increased mRNA expression of peroxisome proliferator-activated receptors in mice. Basic Clin Pharmacol Toxicol. 2011; 108(6):406–413. Doi: 10.1111/j.1742-7843.2011.00671.x.

81.Chen K, and Arnold FH. Engineering cytochrome P450s for enantioselective cyclopropenation of internal alkynes. J Am Chem Soc. 2020; 142(15):6891–6895. Doi: 10.1021/jacs.0c01313.

82.Zhao Y, Sun Q, Zeng Z, Li Q, Zhou S, Zhou M, Xue Y, Cheng X, Xia Y, Wang Q, Tu X. Regulation of SCN3B/scn3b by interleukin 2 (IL-2): il-2 modulates SCN3B/scn3b transcript expression and increases sodium current in myocardial cells. BMC Cardiovasc Disord. 2016; 16:1. Doi: 10.1186/s12872-015-0179-x.

83.Claro Da Silva T, Hiller C, Gai Z, Kullak-Ublick GA. Vitamin D3 transactivates the zinc and manganese

transporter SLC30A10 via the vitamin D receptor. J Steroid Biochem Mol Biol. 2016; 163(2):77–87. Doi: 10.1016/j.jsbmb.2016.04.006.

84.Adegboro AG and Afolabi IS. Molecular mechanisms of mitochondria-mediated ferroptosis: a potential target for antimalarial interventions. Front Cell Dev Biol. 2024; 12:1374735. Doi: 10.3389/fcell.2024.1374735.

85.Hanausek M, Walaszek Z, Slaga TJ. Detoxifying cancer causing agents to prevent cancer. Integr Cancer Ther. 2003; 2(2):139-44. doi:10.1177/1534735403002002005.

86.Miao P, Sheng S, Sun X, Liu J, Huang G. Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life. 2013; 65(11):904–910. Doi: 10.1002/iub.1216.

87.Farhana A and Lappin SL. Biochemistry, lactate dehydrogenase. StatPearls. 2023 https://pubmed.ncbi.nlm.nih.gov/32491468/.

88.Jaiswal SK, Siddiqi NJ, Sharma B. Studies on the ameliorative effect of curcumin on carbofuran induced perturbations in the activity of lactate dehydrogenase in Wistar rats. Saudi J Biol Sci. 2018; 25(8):1585–1592. Doi: 10.1016/j.sjbs.2016.03.002.

89.Ibukun O and Ibukun O. Hepatoprotective and nephroprotective property of Zingiber officinale leaves in acetaminophen induced liver and kidney damage in Wistar rats. Afr J Pure Appl Sci. 2023; 4(1):17–23. Doi: 10.33886/ajpas.v4i1.369.

90.Attaullah M, Ullah A, Hussain M, Zahoor M, Ullah R, Ali EA, Rahman AU, Jan A. Antioxidant, hepatoprotective & nephroprotective potential of a novel synthetic compound 2′, 3′-dihydroxybenzylidene in paracetamol intoxicated rats. Heliyon. 2023; 9(12):e22676. Doi: 10.1016/j.heliyon.2023.e22676.

91.Zakaria ZA, Kamisan FH, Kek TL, Salleh MZ. Hepatoprotective and antioxidant activities of Dicranopteris linearis leaf extract against paracetamol-induced liver intoxication in rats. Pharm Biol. 2020; 58(1):478–489. Doi: 10.1080/13880209.2020.1764058.

92.Fumeaux R, Menozzi-Smarrito C, Stalmach A, Munari C, Kraehenbuehl K, Steiling H, Crozier A, Williamson G, Barron D. First synthesis, characterization, and evidence for the presence of hydroxycinnamic acid sulfate and glucuronide conjugates in human biological fluids as a result of coffee consumption. Org Biomol Chem. 2010; 8(22):5199–5211. Doi: 10.1039/c0ob00137f.

93.Ortiz GG, Bitzer-Quintero OK, Zárate CB, Rodríguez-Reynoso S, Larios-Arceo F, Velázquez-Brizuela IE, Pacheco-Moisés F, Rosales-Corral SA. Monosodium glutamate-induced damage in liver and kidney: a morphological and biochemical approach. Biomed Pharmacother. 2006; 60(2):86–91. Doi: 10.1016/j.biopha.2005.07.012.

94.Lee SH, Kim KN, Kim KM, Joo NS. Irritable bowel syndrome may be associated with elevated alanine aminotransferase and metabolic syndrome. Yonsei Med J. 2016; 57(1):146–152. Doi: 10.3349/ymj.2016.57.1.146.

95.Kiran PM, Raju AV, Rao BG. Investigation of hepatoprotective activity of Cyathea gigantea (Wall. ex. Hook.) leaves against paracetamol-induced hepatotoxicity in rats. Asian Pac J Trop Biomed. 2012; 2(5):352–356. Doi: 10.1016/S2221-1691(12)60055-0.

96.Levick C. How to interpret liver function tests. S Sudan Med J. 2017; 10(2):40–42.

97.Adegbite OS, Iyanda-Joel WO, Akinsanya YI, Aka BN, Mogbo PA, Yakubu OF, Oladipo BO, Afolabi BA, Kukoyi AJ, Omiyale BO, Iyoha AE, Maduagwu EN. Acetaminophen induces mitochondrial permeability transition in rats without causing necrotic liver damage. J Biol Sci. 2016; 16(2):22–29.

98.Kamat SS, Fan H, Sauder JM, Burley SK, Shoichet BK, Sali A, Raushel F. Enzymatic deamination of the epigenetic base N-6-methyladenine. J Am Chem Soc. 2011; 133(7):2080–2083. Doi: 10.1021/ja110157u.

99.Hasan KMM, Tamanna N, Haque MA. Biochemical and histopathological profiling of Wistar rat treated with Brassica napus as a supplementary feed. Food Sci Hum Wellness. 2018; 7:77–82. Doi: 10.1016/j.fshw.2017.12.002.

100.Ren X, Santhosh SM, Coppo L, Ogata FT, Lu J, Holmgren A. The combination of ascorbate and menadione causes cancer cell death by oxidative stress and replicative stress. Free Radic Biol Med. 2019; 134(5):350–358. Doi: 10.1016/j.freeradbiomed.2019.01.037.

101.Eweka AO and Om’Iniabohs FAE. Histological studies of the effects of monosodium glutamate on the small intestine of adult Wistar rats. Electron J Biomed. 2007; 2:14-18.

102.Eze-Steven PE. Histopathological investigation of Curcuma longa (tumeric) and Zingiber officinale (Ginger) on rats with monosodium glutamate-induced leiomyoma. J Exp Res. 2019; 7:9–15.

103.Yoshioka H, Nonogaki T, Fukuishi N, Onosaka S. Calcium-deficient diet attenuates carbon tetrachloride-induced hepatotoxicity in mice through suppression of lipid peroxidation and inflammatory response. Heliyon. 2016; 2(6):e00126. Doi: 10.1016/j.heliyon.2016.e00126.

104.Villegas-Mendez A, Stafford N, Haley MJ, Pravitasari NE, Baudoin F, Ali A, Asih PBS, Siregar JE, Baena E, Syafruddin D, Couper KN, Oceandy D. The plasma membrane calcium ATPase 4 does not influence parasite levels but partially promotes experimental cerebral malaria during murine blood stage malaria. Malar J. 2021; 20(1):297. Doi: 10.1186/s12936-021-03832-w.

105.Onaolapo OJ, Onaolapo AY, Akanmu MA, Gbola O. Evidence of alterations in brain structure and antioxidant status following ‘low-dose’ monosodium glutamate ingestion. Pathophysiology. 2016; 23(3):147–156. Doi: 10.1016/j.pathophys.2016.05.001.

106.Essien AU, Eludire A, Odungide EO, Peters DO, Afolabi IS. Ameliorative effects of calcium-based supplements on monosodium glutamate-induced organ injury in rats. Trop J Nat Prod Res. 2024; 8(11):9043–9049.

107.Granzotto A, Canzoniero LMT, Sensi SL. A neurotoxic menage-a-trois: glutamate, calcium, and zinc in the excitotoxic cascade. Front Mol Neurosci. 2020; 13:600089. Doi: 10.3389/fnmol.2020.600089.

108.Verma M, Lizama BN, Chu CT. Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Transl Neurodegener. 2022; 11(1)(3) Doi: 10.1186/s40035-021-00278-7.