Optimization of Acid Concentration and Hydrolysis Time in the Isolation of Microcrystalline Cellulose from Water Hyacinth (Eichornia crassipes solm) doi.org/10.26538/tjnpr/v5i3.14

Main Article Content

Fitrya Fitrya
Najma A. Fithri
Dina P. Wijaya

Abstract

Water hyacinth (Eichornia crassipes) is an aquatic plant that can disrupt aquatic ecosystems. This plant contains high cellulose and has the potential to be a source of microcrystalline cellulose (MCC); therefore, it has high economic value. This study aims to determine the optimal hydrolysis conditions to isolate MCC from water hyacinth. The optimum conditions were designed with a 32 factorial design with acid concentration and hydrolysis time as independent variables and MCC physical properties as dependent variables. Based on the DX® 10 analysis, the optimum conditions were obtained at an acid concentration of 1.5 M HCl for 30 minutes. Under this optimum condition, the yield of MCC was 91.70% with the angle of repose of 20.695 and moisture absorption capacity of 3.24%. Furthermore, the FTIR and X-ray spectra indicated that MCC of water hyacinth had the same peaks like that of Avicel® PH101. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Fitrya, F., Fithri, N. A., & Wijaya, D. P. (2021). Optimization of Acid Concentration and Hydrolysis Time in the Isolation of Microcrystalline Cellulose from Water Hyacinth (Eichornia crassipes solm): doi.org/10.26538/tjnpr/v5i3.14. Tropical Journal of Natural Product Research (TJNPR), 5(3), 503-508. https://tjnpr.org/index.php/home/article/view/732
Section
Articles

How to Cite

Fitrya, F., Fithri, N. A., & Wijaya, D. P. (2021). Optimization of Acid Concentration and Hydrolysis Time in the Isolation of Microcrystalline Cellulose from Water Hyacinth (Eichornia crassipes solm): doi.org/10.26538/tjnpr/v5i3.14. Tropical Journal of Natural Product Research (TJNPR), 5(3), 503-508. https://tjnpr.org/index.php/home/article/view/732

References

Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, Tan X, Wu S. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J Environ Manag. 2015; 153:68-73.

Frederika RK, Rumhayati B, Triandi TR. Adsorption of Lead and Copper Using Water Hyacinth Compost (Eichornia Crassipes). J Pure Appl Chem Res. 2014; 3(1):27-34.

Li F, Shen K, Long X, Wen J, Xie X, Zeng X, Liang Y, Wei Y, Lin Z, Huang W. Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PLoS One 2016; 11(2):1-13.

Sivaraj R. Activated carbon prepared from Eichornia Crassipes as an adsorbent for the removal of dyes from aqueous solution. Int J Eng Sci Technol. 2010; 2(6):2418-2427.

Surendraraj A, Farvin KHS, Anandan R. Antioxidant potential of water hyacinth (Eichornia crassipes): In vitroantioxidant activity and phenolic composition. J Aquat Food Prod Technol. 2013; 22(1):11-26.

Thamaraiselvi P, Lalitha P, Jayanthi P. Preliminary studies on phytochemicals and antimicrobial activity of solvent extracts of Eichhornia crassipes ( Mart .) Solms. Asian J Plant Sci Res. 2012; 2(2):115-122.

Aboul-Enein AM, Al-Abd AM, Shalaby EA, Abul-Ela F, Nasr-Allah AA, Mahmoud AM, El-Shemy HA. Eichhornia crassipes (Mart) solms from water parasite to potential medicinal remedy. Plant Signal Behav. 2011; 6(6):834-836.

Jafari N. Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms ). J Appl Sci Environ Manag. 2010; 14(2):43-49.

Tyagi T and Agarwal M. Phytochemical screening and GCMS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J Pharmacogn Phytochem. 2017; 6(1):195-206.

Abdel-Fattah AF and Abdel-Naby MA. Pretreatment and enzymic saccharification of water hyacinth cellulose. Carbohydr Polym. 2012; 87(3):2109-2113.

Suryadi H, Sutriyo, Angeline M, Murti MW.Characterization of microcrystalline cellulose obtained from enzymatic hydrolysis of alpha-cellulose and its application. J Young Pharm. 2018; 10(2):S87-S92.

Asrofi M, Abral H, Kasim A, Pratoto A. XRD and FTIR Studies of Nanocrystalline Cellulose from Water Hyacinth (Eichornia crassipes) Fiber. J Metastable Nanocryst Mater.2017; 29:9-16.

Artati E, Effendi A, Haryanto T. Pengaruh Konsentrasi Larutan Pemasak Pada Proses Delignifikasi Eceng Gondok Dengan Proses Organosolv. Ekuilibrium 2009; 8(1):25-28.

Hindi S and Hindi SSZ. Microcrystalline cellulose: Its

processing and pharmaceutical specifications View project

Cellulose nanocrystals View project Microcrystalline

cellulose: Its processing and pharmaceutical specifications.

BioCrystals J. 2016; 1(1):26-38.

Li JB, Huiling D, Huijuan X, Meiyun Z, Reddy KS et al.

Extraction, separation and refining of microcrystalline

cellulose from wheat straw using various pretreatments. Int J

Agric Biol Eng. 2016; 9(2):137-145.

Kharismi RRAY, Sutriyo, Suryadi H. Preparation and

Characterization of Microcrystalline Cellulose Produced

from Betung Bamboo (Dendrocalamus asper) through Acid

Hydrolysis.. J Young Pharm. 2018; 10(2):s79-s83.

Zhao T, Chen Z, Lin X, Ren Z, Li B, Zhang Y. Preparation

and characterization of microcrystalline cellulose (MCC)

from tea waste. Carbohydr Polym. 2018; 184:164-170.

Nwachukwu N, Ugoeze KC. Studies on Microcrystalline

Cellulose Obtained From Saccharum Officinarum 2: Flow

and Compaction Properties. J Drug Deliv Ther. 2018;

(2):54-59.

Mardiyati, Rizkiansyah RR, Basuki A, Suratman R. Serat

Kapuk Ssebagai Bahan Baku Pembuatan Mikrokristalin

Selulosa. J Sains Mater Indones 2016; 17(4):172-177.

Ohwoavworhua F, Adelakun T, Okhamafe A. Processing

pharmaceutical grade microcrystalline cellulose from

groundnut husk: Extraction methods and characterization. Int

J Green Pharm. 2009; 3(2):97-104.

Suesat J and Suwanruji P. Preparation and properties of

microcrystalline cellulose from corn residues. Adv Mater

Res. 2011; 332-334:1781-1784.

Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE,

Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman

M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano , Abe

K, Nogi M,. Nakagaito AN, Mangalam A, Simonsen J,

BenightA, AS, Bismarck A, Berglund A, Peijs T. Review:

current international research into cellulose nanofibres and

nanocomposites. J Mater Sci. 2010; 45(1):1-33.

Gusrianto P, Zulharmita, Rivai H. Preparasi dan

Karakterisasi Mikrokristalin Selulosa Dari Limbah Serbuk

Kayu Pengergajian. J Sains dan Teknol Farm 2011;

(2):180-188.

Jinapong N, Suphantharika M, Jamnong P. Production of

instant soymilk powders by ultrafiltration, spray drying and

fluidized bed agglomeration. J Food Eng. 2008; 84(2):194-

Haque M. Variation of Flow Property of Different Set of

Formulas of Excipients Against Variable Ratio of Different

Diluents. Thesis. East West University, 2010; 10-11p.

Yu M, Yang R, Huang L, Cao X, Yang F, Liu D. Preparation

and characterization of bamboo nanocrystalline cellulose.

BioResourc. 2012; 7(2):1802-1812.

Ngan CL, Basri M, Lye FF, Fard Masoumi HR, Tripathy M,

Abedi Karjiban R, Abdul-Malek E. Comparison of BoxBehnken and central composite designs in optimization of

fullerene loaded palm-based nano-emulsions for

cosmeceutical application. Ind Crops Prod. 2014; 59:309-

Alemdar A and Sain M. Isolation and characterization of

nanofibers from agricultural residues - Wheat straw and soy

hulls. Bioresour Technol. 2008; 99(6):1664-1671.

Zhao H, Kwak JH, Conrad Zhang Z, Brown HM, Arey BW.

Studying cellulose fiber structure by SEM, XRD, NMR and

acid hydrolysis. Carbohydr Polym. 2007; 68(2):235-241.

Vora R and Shah Y. Crystalline Cellulose Obtained From

Corn Husk Using Different Acid Alkali Treatment. Indo Am

J Pharm Sci. 2017; 4(08):2399-2408.

Semachai T, Chandranupap P, Chandranupap P. Preparation

of Microcrystalline Cellulose from Water Hyacinth

Reinforced Polylactic Acid Biocomposite. MATEC Web

Conf. 2018; 187:1-5.

Keshk SMAS and Haija MA. A new method for producing

microcrystalline cellulose from Gluconacetobacter xylinus

and kenaf. Carbohydr Polym. 2011; 84(4):1301-1305.

Azubuike CP and Okhamafe AO. Physicochemical,

spectroscopic and thermal properties of microcrystalline

cellulose derived from corn cobs. Int J Recycl Org Waste

Agric. 2012; 3(3):106-115.

El-Sakhawy M and Hassan ML. Physical and mechanical

properties of microcrystalline cellulose prepared from

agricultural residues. Carbohydr Polym. 2007; 67(1):1-10.

Bhimte NA and Tayade PT. Evaluation of microcrystalline

cellulose prepared from sisal fibers as a tablet excipient: A

technical note. AAPS PharmSciTech. 2007; 8(1):1-7.

Nasution H, Yurnaliza, Y Veronicha V, Irmadani I, Sitompul

S. Preparation and characterization of cellulose

microcrystalline (MCC) from fiber of empty fruit bunch

palm oil. IOP Conf Ser Mater Sci Eng 2017; 180(2017):1-

anti-proliferative activities of essential oils of plants from

Burkina Faso. PloS ONE. 2014; 9(3):e92122.