Optimization of Acid Concentration and Hydrolysis Time in the Isolation of Microcrystalline Cellulose from Water Hyacinth (Eichornia crassipes solm) doi.org/10.26538/tjnpr/v5i3.14
Main Article Content
Abstract
Water hyacinth (Eichornia crassipes) is an aquatic plant that can disrupt aquatic ecosystems. This plant contains high cellulose and has the potential to be a source of microcrystalline cellulose (MCC); therefore, it has high economic value. This study aims to determine the optimal hydrolysis conditions to isolate MCC from water hyacinth. The optimum conditions were designed with a 32 factorial design with acid concentration and hydrolysis time as independent variables and MCC physical properties as dependent variables. Based on the DX® 10 analysis, the optimum conditions were obtained at an acid concentration of 1.5 M HCl for 30 minutes. Under this optimum condition, the yield of MCC was 91.70% with the angle of repose of 20.695 and moisture absorption capacity of 3.24%. Furthermore, the FTIR and X-ray spectra indicated that MCC of water hyacinth had the same peaks like that of Avicel® PH101.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Zhang F, Wang X, Yin D, Peng B, Tan C, Liu Y, Tan X, Wu S. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J Environ Manag. 2015; 153:68-73.
Frederika RK, Rumhayati B, Triandi TR. Adsorption of Lead and Copper Using Water Hyacinth Compost (Eichornia Crassipes). J Pure Appl Chem Res. 2014; 3(1):27-34.
Li F, Shen K, Long X, Wen J, Xie X, Zeng X, Liang Y, Wei Y, Lin Z, Huang W. Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PLoS One 2016; 11(2):1-13.
Sivaraj R. Activated carbon prepared from Eichornia Crassipes as an adsorbent for the removal of dyes from aqueous solution. Int J Eng Sci Technol. 2010; 2(6):2418-2427.
Surendraraj A, Farvin KHS, Anandan R. Antioxidant potential of water hyacinth (Eichornia crassipes): In vitroantioxidant activity and phenolic composition. J Aquat Food Prod Technol. 2013; 22(1):11-26.
Thamaraiselvi P, Lalitha P, Jayanthi P. Preliminary studies on phytochemicals and antimicrobial activity of solvent extracts of Eichhornia crassipes ( Mart .) Solms. Asian J Plant Sci Res. 2012; 2(2):115-122.
Aboul-Enein AM, Al-Abd AM, Shalaby EA, Abul-Ela F, Nasr-Allah AA, Mahmoud AM, El-Shemy HA. Eichhornia crassipes (Mart) solms from water parasite to potential medicinal remedy. Plant Signal Behav. 2011; 6(6):834-836.
Jafari N. Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms ). J Appl Sci Environ Manag. 2010; 14(2):43-49.
Tyagi T and Agarwal M. Phytochemical screening and GCMS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. J Pharmacogn Phytochem. 2017; 6(1):195-206.
Abdel-Fattah AF and Abdel-Naby MA. Pretreatment and enzymic saccharification of water hyacinth cellulose. Carbohydr Polym. 2012; 87(3):2109-2113.
Suryadi H, Sutriyo, Angeline M, Murti MW.Characterization of microcrystalline cellulose obtained from enzymatic hydrolysis of alpha-cellulose and its application. J Young Pharm. 2018; 10(2):S87-S92.
Asrofi M, Abral H, Kasim A, Pratoto A. XRD and FTIR Studies of Nanocrystalline Cellulose from Water Hyacinth (Eichornia crassipes) Fiber. J Metastable Nanocryst Mater.2017; 29:9-16.
Artati E, Effendi A, Haryanto T. Pengaruh Konsentrasi Larutan Pemasak Pada Proses Delignifikasi Eceng Gondok Dengan Proses Organosolv. Ekuilibrium 2009; 8(1):25-28.
Hindi S and Hindi SSZ. Microcrystalline cellulose: Its
processing and pharmaceutical specifications View project
Cellulose nanocrystals View project Microcrystalline
cellulose: Its processing and pharmaceutical specifications.
BioCrystals J. 2016; 1(1):26-38.
Li JB, Huiling D, Huijuan X, Meiyun Z, Reddy KS et al.
Extraction, separation and refining of microcrystalline
cellulose from wheat straw using various pretreatments. Int J
Agric Biol Eng. 2016; 9(2):137-145.
Kharismi RRAY, Sutriyo, Suryadi H. Preparation and
Characterization of Microcrystalline Cellulose Produced
from Betung Bamboo (Dendrocalamus asper) through Acid
Hydrolysis.. J Young Pharm. 2018; 10(2):s79-s83.
Zhao T, Chen Z, Lin X, Ren Z, Li B, Zhang Y. Preparation
and characterization of microcrystalline cellulose (MCC)
from tea waste. Carbohydr Polym. 2018; 184:164-170.
Nwachukwu N, Ugoeze KC. Studies on Microcrystalline
Cellulose Obtained From Saccharum Officinarum 2: Flow
and Compaction Properties. J Drug Deliv Ther. 2018;
(2):54-59.
Mardiyati, Rizkiansyah RR, Basuki A, Suratman R. Serat
Kapuk Ssebagai Bahan Baku Pembuatan Mikrokristalin
Selulosa. J Sains Mater Indones 2016; 17(4):172-177.
Ohwoavworhua F, Adelakun T, Okhamafe A. Processing
pharmaceutical grade microcrystalline cellulose from
groundnut husk: Extraction methods and characterization. Int
J Green Pharm. 2009; 3(2):97-104.
Suesat J and Suwanruji P. Preparation and properties of
microcrystalline cellulose from corn residues. Adv Mater
Res. 2011; 332-334:1781-1784.
Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE,
Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman
M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano , Abe
K, Nogi M,. Nakagaito AN, Mangalam A, Simonsen J,
BenightA, AS, Bismarck A, Berglund A, Peijs T. Review:
current international research into cellulose nanofibres and
nanocomposites. J Mater Sci. 2010; 45(1):1-33.
Gusrianto P, Zulharmita, Rivai H. Preparasi dan
Karakterisasi Mikrokristalin Selulosa Dari Limbah Serbuk
Kayu Pengergajian. J Sains dan Teknol Farm 2011;
(2):180-188.
Jinapong N, Suphantharika M, Jamnong P. Production of
instant soymilk powders by ultrafiltration, spray drying and
fluidized bed agglomeration. J Food Eng. 2008; 84(2):194-
Haque M. Variation of Flow Property of Different Set of
Formulas of Excipients Against Variable Ratio of Different
Diluents. Thesis. East West University, 2010; 10-11p.
Yu M, Yang R, Huang L, Cao X, Yang F, Liu D. Preparation
and characterization of bamboo nanocrystalline cellulose.
BioResourc. 2012; 7(2):1802-1812.
Ngan CL, Basri M, Lye FF, Fard Masoumi HR, Tripathy M,
Abedi Karjiban R, Abdul-Malek E. Comparison of BoxBehnken and central composite designs in optimization of
fullerene loaded palm-based nano-emulsions for
cosmeceutical application. Ind Crops Prod. 2014; 59:309-
Alemdar A and Sain M. Isolation and characterization of
nanofibers from agricultural residues - Wheat straw and soy
hulls. Bioresour Technol. 2008; 99(6):1664-1671.
Zhao H, Kwak JH, Conrad Zhang Z, Brown HM, Arey BW.
Studying cellulose fiber structure by SEM, XRD, NMR and
acid hydrolysis. Carbohydr Polym. 2007; 68(2):235-241.
Vora R and Shah Y. Crystalline Cellulose Obtained From
Corn Husk Using Different Acid Alkali Treatment. Indo Am
J Pharm Sci. 2017; 4(08):2399-2408.
Semachai T, Chandranupap P, Chandranupap P. Preparation
of Microcrystalline Cellulose from Water Hyacinth
Reinforced Polylactic Acid Biocomposite. MATEC Web
Conf. 2018; 187:1-5.
Keshk SMAS and Haija MA. A new method for producing
microcrystalline cellulose from Gluconacetobacter xylinus
and kenaf. Carbohydr Polym. 2011; 84(4):1301-1305.
Azubuike CP and Okhamafe AO. Physicochemical,
spectroscopic and thermal properties of microcrystalline
cellulose derived from corn cobs. Int J Recycl Org Waste
Agric. 2012; 3(3):106-115.
El-Sakhawy M and Hassan ML. Physical and mechanical
properties of microcrystalline cellulose prepared from
agricultural residues. Carbohydr Polym. 2007; 67(1):1-10.
Bhimte NA and Tayade PT. Evaluation of microcrystalline
cellulose prepared from sisal fibers as a tablet excipient: A
technical note. AAPS PharmSciTech. 2007; 8(1):1-7.
Nasution H, Yurnaliza, Y Veronicha V, Irmadani I, Sitompul
S. Preparation and characterization of cellulose
microcrystalline (MCC) from fiber of empty fruit bunch
palm oil. IOP Conf Ser Mater Sci Eng 2017; 180(2017):1-
anti-proliferative activities of essential oils of plants from
Burkina Faso. PloS ONE. 2014; 9(3):e92122.