Potential of Orthosiphon aristatus Blume Miq as Antiviral: A Review doi.org/10.26538/tjnpr/v5i3.1

Main Article Content

Fahrauk Faramayuda
Totik Sri Mariani
Elfahmi Elfahmi
Sukrasno Sukrasno

Abstract

Orthosiphon aristatus Blume Miq is one of the commonly used medicinal plants known to have many benefits, including antiviral activity. Components of the main secondary metabolites of O. aristatus are sinensetin, rosmarinic acid, and eupatorin. The development of plants or drugs that have the potential to act as antiviral agent during the Covid-19 pandemic continues. Based on previous research reports, the main secondary metabolite content in O. aristatus could have antiviral activity. The present review was done by searching and analyzing research journals on the potential for active content of O. aristatus in inhibiting the growth or replication of viruses. There has been no previous review regarding the potential for O. aristatus as an antiviral agent, therefore this review is expected to provide information about potential sources of antivirals originating from the O. aristatus plant. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Faramayuda, F., Mariani, T. S., Elfahmi, E., & Sukrasno, S. (2021). Potential of Orthosiphon aristatus Blume Miq as Antiviral: A Review: doi.org/10.26538/tjnpr/v5i3.1. Tropical Journal of Natural Product Research (TJNPR), 5(3), 410-419. https://tjnpr.org/index.php/home/article/view/693
Section
Articles
Author Biographies

Fahrauk Faramayuda, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, West Java 40132, Indonesia,

Faculty of Pharmacy Universitas Jenderal Achmad Yani (UNJANI), Cimahi, West Java 40532, Indonesia

Elfahmi Elfahmi, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, West Java 40132, Indonesia,

Biosceinces and Biotechnology Research Center, Institut Teknologi Bandung (ITB), Bandung, West Java 40132, Indonesia

 

How to Cite

Faramayuda, F., Mariani, T. S., Elfahmi, E., & Sukrasno, S. (2021). Potential of Orthosiphon aristatus Blume Miq as Antiviral: A Review: doi.org/10.26538/tjnpr/v5i3.1. Tropical Journal of Natural Product Research (TJNPR), 5(3), 410-419. https://tjnpr.org/index.php/home/article/view/693

References

Ripim NSM, Fazil N, Ibrahim SNK, Bahtiar AA, Wai YC, Ibrahim N, Nor NSM. Antiviral properties of Orthosiphon stamineus aqueous extract in herpes simplex virus type 1 infected cells. Sains Malaysiana. 2018; 47(8):1725-1730.

Matsubara T, Bohgaki T, Watarai M, Suzuki H, Ohashi K, Shibuya H. Antihypertensive actions of

methylripariochromene a from Orthosiphon aristatus, an indonesian traditional medicinal plant. Bio Pharm Bull. 1999; 22:1083-1088.

Alshawsh MA, Abdulla MA, Ismail S, Amin ZA, Qader SW, Hadi HA, Harmal NS. Free radical scavenging, antimicrobial and immunomodulatory activities of Orthosiphon Stamineus.Molecules. 2012; 17:5385-5395.

Akowuah GA, Zhari I, Norhayati I, Sadikun A. Radical scavenging activity of methanol leaf extracts of Orthosiphon stamineus. Pharm Biol. 2004; 42(8):629-635.

Pauzi N, Mohd KS, Abdul Halim NH, Ismail Z. Orthosiphon stamineus extracts inhibits proliferation and induces apoptosis in uterine fibroid cells. Asian Pac J Cancer Prev.2018; 19(10):2737-2744.

Halim NH, Pauzi N, Hamil SHR, Shafaei A, Ismail Z, Mohd KS. standardization of Orthoshiphon stamineus raw material and extracts for anti-uterine fibroid. Int J Pharmacogn Phytochem Res. 2017; 9(4):512-515.

Awale S, Tezuka Y, Banskota A, Shimoji S, Taira K, Kadota S. norstaminane- and isopimarane-type diterpenes of Orthosiphon stamineus from Okinawa. Tetrahedron 2002;Vol 58:5503-5512.

Sahib H, Ismail Z, N.H O, Abdul Majid AMS. Orthosiphon Stamineus Benth. methanolic extract enhances the antiproliferative effects of tamoxifen on human hormone dependent breast cancer. Int J Pharmacol. 2009; 5(4):273-276.

Bokhari RA, Tantowi NACA, Lau SF, Mohamed S. java tea (Orthosiphon stamineus) protected against osteoarthritis by mitigating inflammation and cartilage degradation: a

preclinical study. Inflammopharmacol. 2018; 26(4):939-949.

Yam MF, Ang LF, Salman IM, Ameer OZ, Lim V, Ong LM, Ahmad M, Asmawil MZ, Basir R. Orthosiphon stamineusleaf extract protects against ethanol-induced gastropathy in rats. J Med Food. 2009; 12(5):1089-1097.

Abraika OSS, Atangwho IJ, Sadikun A, Asmawi MZ, Hussain EA. In vitro activity-guided vasodilatory effect of Orthosiphon stamineus leaves. J Exp Integr Med. 2012;2(3):255-261.

Choo BKM, Kundap UP, Kumari Y, Hue SM, Othman I, Shaikh MF. Orthosiphon stamineus leaf extract affects tnf- α and seizures in a zebrafish model. Front Pharmacol. 2018;9:1-11.

Sriplang K, Adisakwattana S, Rungsipipat A, Yibchok-Anun S. Effects of Orthosiphon stamineus aqueous extract on plasma glucose concentration and lipid profile in normal and streptozotocin-induced diabetic rats. J Ethnopharmacol.2007; 109(3):510-514.

Mohamed E, Mohamed AJ, Abdullah M, Sadikun A, Saad Ebrika O, Yam M. antihyperglycemic effect of Orthosiphon stamineus benth leaves extract and its bioassay-guided fractions. Molecules. 2011; 16: 3787-3801.

Mohamed E, Pin Lim C, Saad Ebrika O, Abdullah M, Sadikun A, Yam M. toxicity evaluation of a standardised 50% ethanol extract of Orthosiphon Stamineus. J Ethnopharmacol. 2010; 133:358-363.

George A, Chinnappan S, Choudhary Y, Choudhary VK, Bommu P, Wong HJ. effects of a proprietary tandardized Orthosiphon stamineus ethanolic leaf extract on enhancing memory in sprague dawley rats possibly via blockade of adenosine a 2a receptors. Evid-Based Compl Altern Med.2015; 2015:1-9.

Ho C, Noryati I, Sulaiman S, Rosma A. in vitro antibacterial and antioxidant activities of Orthosiphon stamineus benth . extracts against food-borne bacteria. Food Chem. 2010;122(4):1168-1172.

Chen CP, Lin CC, Tsuneo N. screening of taiwanese crude drugs for antibacterial activity against Streptococcus mutans. J Ethnopharmacol. 1989; 27(3):285-295.

Hossain MA, Ismail Z, Rahman A, Kang SC. Chemical composition and anti-fungal properties of the essential oils and crude extracts of Orthosiphon stamineus Benth. Ind Crops Prod. 2008; 27(3):328-334.

Yam MF, Basir R, Asmawi MZ, Ismail Z. Antioxidant and hepatoprotective effects of Orthosiphon stamineus Benth. standardized extract. Am J Chin Med. 2007; 35(1):115-126.

Maryammal R, Venkatanarayanan R, Chinnadhurai M. Hepatoprotective activity of “Orthosiphon stamineus” on liver damage caused by paracetamol in rats. Jordan J Biol Sci. 2008; 1:105-108.

Olah N, Radu L, Mogos C. Phytochemical and pharmacological studies on Orthosiphon stamineus Benth . ( Lamiaceae ) hydroalcoholic extracts. J Pharm Biomed Anal.2003; 33:117-123.

Adam Y, Somchit MN, Sulaiman MR, Nasaruddin AA, Zuraini A, Bustamam AA, Zakaria ZA. Diuretic properties of Orthosiphon stamineus Benth. J Ethnopharmacol. 2009;124(1):154-158.

Arafat OM, Tham SY, Sadikun A, Zhari I, Haughton PJ, Asmawi MZ. Studies on diuretic and hypouricemic effects of Orthosiphon stamineus methanol extracts in rats. J

Ethnopharmacol. 2008; 118(3):354-360.

Yuniarto ARI, Susilawati E, Khairunnisa I, Juanda D, Setiawan F. Antioxidant and gastric ulcer healing effect of Orthosiphon stamineus ( benth .) leaves extract in aspirininduced rats. Asian J Pharm Clin Res. 2017; 10(2):2-4.

Adnyana IK, Setiawan F, Insanu M. From ethnopharmacology to clinical study of Orthosiphon

stamineus benth. Int J Pharm Pharm Sci. 2013; 5(3):66-73.

Premgamone A, Sriboonlue P, Disatapornjaroen W, Maskasem S, Sinsupan N, Apinives C. A long-term study on the efficacy of a herbal plant, Orthosiphon grandiflorus, and sodium potassium citrate in renal calculi treatment. Southeast Asian J Trop Med Public Health. 2001; 32(3):654-660.

Muhammad H, Sulaiman SA, Ismail Z, Paumgartten FJR. Study on the developmental toxicity of a standardized extract of Orthosiphon stamineus in rats. Rev Bras Farmacogn - Braz J Pharmacogn. 2013; 23(3):513-520.

Lin W-Y, Yu Y-J, Jinn T-R. Evaluation of the virucidal effects of rosmarinic acid against enterovirus 71 infection via in vitro and in vivo study. Virol J. 2019; 16(1):94.

Hsieh CF, Jheng JR, Lin GH, Chen YL, Ho JY, Liu CJ, Hsu KY, Chen YS, Chan YF, Yu HM, Hsieh PW, Chern JH, Horng JT. Rosmarinic acid exhibits broad anti-enterovirus A71 activity by inhibiting the interaction between the fivefold axis of capsid VP1 and cognate sulfate receptors. Emerg Microbes Infect. 2020; 9(1):1194-1205.

Li J, Jie X, Liang X, Chen Z, Xie P, Pan X, Zhou B, Li J. Sinensetin suppresses influenza a virus-triggered

inflammation through inhibition of NF-κB and MAPKs signalings. BMC Compl Med Ther. 2020; 20(1):135 p.

Sarkar K, Das R. preliminary identification of hamamelitannin and rosmarinic acid as covid-19 inhibitors based on molecular docking. Lett Drug Des Discov. 2020;17:67.

Wondmkun YT and Mohammed OA. severe acute respiratory Syndrome-Coronavirus-2 ( SARS-COV-2 )

inhibition and other antiviral effects of ethiopian medicinal plants and their compounds traditional medicines for COVID-19 treatment. iMedPub J. 2020; 19:1-7.

Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother. 2007; 51(9):3367-3370.

Abdelwahed W, Falah S, Hasan R. Antiviral activity of different misai kucing extracts against herpes simplex virus type 1. Eurasia J Biosci. 2020; 14(1)1003-1012.

Tsukamoto Y, Ikeda S, Uwai K, Taguchi R, Chayama K, Sakaguchi T, Narita R, Yao WL, Takeuchi F, Otakaki Y, Watashi K, Wakita T, Kato H, Fujita T. Rosmarinic acid is a novel inhibitor for Hepatitis B virus replication targeting viral epsilon RNA-polymerase interaction. PLoS One. 2018; 13(5):1-16.

Gimbun J, Pang SF, Yusoff MM. Orthosiphon Stamineus (Java Tea). Nonvitamin Nonmineral Nutr Suppl. 2018; 10(3):327-333.

Berim A and Gang DR. Methoxylated flavones: occurrence, importance, biosynthesis. Phytochem Rev. 2016; 15(3):363-390.

Hossain MA and Ismail Z. Quantification and enrichment of sinensetin in the leaves of Orthosiphon stamineus. Arab J Chem. 2016; 9:S1338-S1341.

National Center for Biotechnology Information. PubChem Database. Eupatorin, CID=97214.

https://pubchem.ncbi.nlm.nih.gov/compound/97214 (accessed on Apr. 20, 2019). Published 2019.

Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S. Evolution of rosmarinic acid biosynthesis. Phytochem. 2009; 70(15-16):1663-1679.

Amoah SKS, Sandjo LP, Kratz JM, Biavatti MW. Rosmarinic acid – pharmaceutical and clinical aspects.

Planta Med. 2016; 82(5):388-406.

Guo Z, Liang X, Xie Y. Qualitative and quantitative analysis on the chemical constituents in Orthosiphon stamineusBenth. using ultra high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal. 2019; 164:135-147.

Ameer OZ, Salman IM, Asmawi MZ, Ibraheem ZO, Yam MF. Orthosiphon stamineus : traditional uses,

phytochemistry, pharmacology, and toxicology. J Med Food.2012; 15(8):678-690.

Ashraf K, Sultan S, Adam A. Orthosiphon stamineus Benth. is an outstanding food medicine: review of phytochemical and pharmacological activities. J Pharm Bioallied Sci. 2018;10(3):109-118.

Hossain MA, Mizanur Rahman SM. Isolation and characterisation of flavonoids from the leaves of medicinal plant Orthosiphon stamineus. Arab J Chem. 2015; 8(2):218-221.

Muhammad H, Omar MH, Isa ML. Male reproductive toxicity studies of Orthosiphon stamineus aqueous extract in Sprague Dawley rats. J Med Plants Stud. 2018; 6(5):07-14.

Sittisomwong N, Attawish A, Chuntapet P. chronic toxicity test of Orthosiphon Aristatus (Bl.) Miq. extract. Bull Dept Med Sci. 1999; 41(1):41-54.

Han CJ, Hussin AH, Ismail S. Toxicity study of Orthosiphon stamineus Benth ( Misai Kucing ) on Sprague Dawley rats.Trop Biomed. 2008; 25(1):9-16.

Muhammad H, Gomes-Carneiro MR, Poça KS, De-Oliveira AC, Afzan A, Sulaiman SA, Ismail Z, Paumgartten FJ.. Evaluation of the genotoxicity of Orthosiphon stamineus aqueous extract. J Ethnopharmacol. 2011; 133(2):647-653.

Kurokawa M, Shimizu T, Watanabe W, Shiraki K. development of new antiviral agents from natural products. Open Antimicrob Agents J. 2010; 2:49-57.

Hussain W, Haleem K, Khan I, Tauseef I, Qayyum S, Ahmed B, Riaz,M. Medicinal plants: A repository of

antiviral metabolites. Future Virol. 2017; 12:1-10.

Saxena SK. Emerging trends, challenges and prospects in antiviral therapeutics and drug development for infectious diseases. e-J Biol. 2010; 6:26-35.

Ikeda K, Tsujimoto K, Uozaki M, Nishide M, Suzuki Y, Koyama AH, Yamasaki H. Inhibition of multiplication of herpes simplex virus by caffeic acid. Int J Mol Med. 2011;28:595-598.

Medini F, Megdiche W, Mshvildadze V, Pichette A, Legault J, St-Gelais A, Ksouri, R.. Antiviral-guided fractionation and isolation of phenolic compounds from Limonium densiflorumhydroalcoholic extract. Comptes Rendus Chim. 2016;19(6):726-732.

Astani A, Reichling J, Schnitzler P. Screening for antiviral activities of isolated compounds from essential oils. EvidBased Compl Altern Med. 2011; 2011:1-8.

Astani A and Schnitzler P. Antiviral activity of monoterpenes beta-pinene and limonene against herpes

simplex virus in vitro. Iran J Microbiol. 2014; 6(3):149-155.

Bourne KZ, Bourne N, Reising SF, Stanberry LR. Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antiviral Res. 1999; 42(3):219-226.

Benencia F and Courreges M. In vitro and in vivo activity of eugenol on human herpesvirus. Phytother Res. 2000; 14:495-500.

Sharifi-Rad J, Salehi B, Baghalpour N, Kobarfard F, SharifiRad M, Mohammadizade M. Antiviral activity of monoterpenes thymol, carvacrol and p-cymene against herpes simplex virus in vitro. Int Pharm Acta. 2018; 1(1):73-73.

Guo X-ZJ and Thomas PG. New fronts emerge in the influenza cytokine storm. Semin Immunopathol. 2017;39(5):541-550.

Shin H-S, Kang S-I, Yoon S-A, Ko H-C, Kim S-J. Sinensetin Attenuates LPS-Induced Inflammation by Regulating the Protein Level of IκB-α. Biosci Biotechnol Biochem. 2012;76(4):847-849.

Chiaretti A, Pulitanò S, Barone G, Ferrara P, Romano V, Capozzi D, Riccardi R. IL-1β and IL-6 Upregulation in children with H1N1 influenza virus infection. Mediators Inflamm. 2013; 2013:8.

Seo SH and Webster R. Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells. J Virol. 2002; 76:1071-1076.

Rokkam D, Lafemina MJ, Lee JW, Matthay MA, Frank JA. Claudin-4 levels are associated with intact alveolar fluid clearance in human lungs. Am J Pathol. 2011; 179(3):1081-1087.

Yamauchi N, Harada T, Taniguchi F, Yoshida S, Iwabe T, Terakawa N. Tumor necrosis factor-α induced the release of interleukin-6 from endometriotic stromal cells by the nuclear factor-κB and mitogen-activated protein kinase pathways. Fertil Steril. 2004; 82:1023-1028.

Utsunomiya H, Ichinose M, Ikeda K, Uozaki M, Morishita J, Kuwahara T, Koyama AH, Yamasaki H. Inhibition by caffeic acid of the influenza A virus multiplication in vitro. Int J Mol Med. 2014; 34:1020-4.

Nagy MM, Al-Mahdy DA, Abd El Aziz OM, Kandil AM, Tantawy MA, El Alfy TSM. chemical composition and antiviral activity of essential oils from Citrus reshni hort. ex Tanaka (Cleopatra mandarin) cultivated in Egypt. J Essent Oil Bear Plants. 2018; 21(1):264-272.

Li Y, Lai Y, Wang Y, Liu N, Zhang F, Xu P. 1, 8-Cineol protect against influenza-virus-induced pneumonia in mice. Inflamm. 2016; 39(4):1582-1593.

Choi H-J. Chemical constituents of essential oils possessing anti-influenza a/ws/33 virus activity. Osong Public Heal Res Perspect. 2018; 9:348-353

Dai JP, Zhao XF, Zeng J, Wan QY, Yang JC, Li WZ, Chen XX, Wang GF, Li KS. Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on antiinfluenza A virus activity. PLoS One. 2013; 8:1-16.

Zhou B, Yang Z, Feng Q, Liang X, Li J, Zanin M, Jiang Z, Zhong N. Aurantiamide acetate from baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-κB signaling pathway in Influenza A virus-infected cells. J Ethnopharmacol. 2017; 199:60-67.

Sampangi-ramaiah MH, Vishwakarma R, Shaanker RU. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Curr Sci. 2020; 118(7):1087-1092.

NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016; 44:D7-D19.

Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, Costanzo LD, Duarte JM, Dutta S, Feng Z, Green RK, Goodsell DS, Hudson B, Kalro T, Lowe R, Peisach E, Randle C, Rose AS, Shao C, Tao YP, Valasatava Y, Voigt M, Westbrook JD, Woo J, Yang H, Young JY, Zardecki C, Berman HM, Burley SK. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2017; 45(D1):D271-D281.

Hasan M, Parvez MSA, Azim KF, Imran AS, Raihan T, Gulshan A, Muhit S, Akhand RN, Uddin MB, Ahmed SSU. Main Protease inhibitors and drug surface hotspot for the treatment of COVID-19: Drug Repurposing and Molecular Docking Approach. ChemRxiv. 2020; 2020:1-48.

Rowaiye, Adekunle, Olukemi Onuh, Joy Oladimeji-Salami, Doofan Bur, Moses Njoku, Ifedilichukwu Nma, Comfort John, Olanike Binuyo, Faith Pius. In silico identification of the potential natural inhibitors of SARS-CoV-2 Guanine-N7 Methyltransferase. ChemRxiv. 2020; 2020:1-39.

Sekiou O, Bouziane I, Bouslama Z, Djemel A. In-silico identification of potent inhibitors of COVID-19 Main Protease (Mpro) and Angiotensin Converting Enzyme 2 (ACE2) from natural products: quercetin, hispidulin, and cirsimaritin exhibited better potential inhibition than hydroxy-chloroquine against. ChemRxiv. 2020; 2020:1-22.

Adem Ş, Eyupoglu V, Sarfraz I, Rasul A, Zahoor AF, Ali M, Abdalla M, Ibrahim IM, Elfiky AA. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomed. 2020; 22:153310.

Dahab MA, Hegazy MM, Abbass HS. Hordatines as a Potential Inhibitor of COVID-19 Main Protease and RNA Polymerase: An In-Silico Approach. Nat Prod Bioprospect.2020; 10(6):453-462.

Narkhede RR, Pise A V, Cheke RS, Shinde SD. recognition of natural products as potential inhibitors of COVID-19 Main Protease (Mpro): in-silico evidences. Nat Prod Bioprospect. 2020; 10(5):297-306.

Sharma AD and Kaur I. Eucalyptol (1,8 cineole) from eucalyptus essential oil a potential inhibitor of COVID 19 corona virus infection by Molecular docking studies. Preprints. 2020; 2020:8.

Haid S, Novodomská A, Gentzsch J, Grethe C, Geuenich S, Bankwitz D, Chhatwal P, Jannack B, Hennebelle T, Bailleul F, Keppler OT, Poenisch M, Bartenschlager R, Hernandez C, Lemasson M, Rosenberg AR, Wong-Staal F, DavioudCharvet E, Pietschmann T. A plant-derived flavonoid inhibits

entry of all hcv genotypes into human hepatocytes. Gastroenterol. 2012; 143(1):213-222.

Duan S-P, Zhu L-H, Li P, Song X-W, Wang H-W, Shen B-S. Effect and mechanism of danshensu on hepatitis B virus reverse transcriptase and antigen expression. Zhongguo Zhong Yao Za Zhi. 2016; 41(7):1297-1301.

Kong L, Li S, Liao Q, Zhang Y, Sun R, Zhu X, Zhang Q, Wang J, Wu X, Fang X, Zhu Y. Oleanolic acid and ursolic acid: Novel hepatitis C virus antivirals that inhibit NS5B activity. Antiviral Res. 2013; 98(1):44-53.

Chang C-D, Lin P-Y, Hsu J-L, Shih W-L. Ursolic acid suppresses hepatitis b virus x protein-mediated autophagy and chemotherapeutic drug resistance. Anticancer Res. 2016;36:5097-5108.

Abd-Elazem I, Chen H, Bates R, Huang RC. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza. Antiviral Res. 2002; 55:91-106.

Lin Z, Neamati N, Zhao H, Kiryu Y, Turpin JA, Aberham C, Strebel K, Kohn K, Witvrouw M, Pannecouque C, Debyser Z, De Clercq E, Rice WG, Pommier Y, Burke TR Jr. Chicoric acid analogues as HIV-1 Integrase Inhibitors. J Med Chem. 1999; 42(8):1401-1414.

McDougall B, King PJ, Wu BW, Hostomsky Z, Reinecke MG, Robinson WE. Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase. Antimicrob Agents Chemother. 1998;42(1):140-146.

Zhang H-S, Chen X-Y, Wu T-C, Zhang F-J. Tanshinone ⅡA inhibits Tat-induced HIV-1 transactivation through redoxregulated AMPK/Nampt pathway. J Cell Physiol. 2014; 229(9):1193-201.

Mengoni F, Lichtner M, Battinelli L, Marzi M, Mastroianni CM, Vullo V, Mazzanti G. In vitro anti-HIV activity of oleanolic acid on infected human mononuclear cells. Planta Med. 2002; 68:111-114.

Kashiwada Y, Wang HK, Nagao T, Kitanaka S, Yasuda I, Fujioka T, Yamagishi T, Cosentino LM, Kozuka M, Okabe H, Ikeshiro Y, Hu CQ, Yeh E, Lee KH. Anti-AIDS agents. 30. anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J Nat Prod. 1998;

(9):1090-1095.

Xu H-X, Zeng F-Q, Wan M, Sim K-Y. Anti-HIV triterpene acids from Geum japonicum. J Nat Prod. 1996; 59(7):643-645.

Tezuka Y, Stampoulis P, Banskota AH, Awale S, Tran KQ, Saiki I, Kadota S. Constituents of the vietnamese medicinal plant Orthosiphon stamineus. Chem Pharm Bull. 2000;48(11):1711-9.

Liu Y, Tong J, Tong Y, Li P, Cui X, Cao H. In vitro antiinfluenza virus effect of total flavonoid from Trollius ledebouri Reichb. J Int Med Res. 2018; 46(4):1380-1390.

Malterud KF, Hanche-olsen IM, Smith-kielland I. Flavonoids from Orthosiphon spicatus. Planta Med. 1989; 55:569-570.

Nuengchamnong N, Krittasilp K, Ingkaninan K. Characterisation of phenolic antioxidants in aqueous extract of Orthosiphon grandiflorus tea by LC-ESI-MS/MS coupled to DPPH assay. Food Chem. 2011; 127(3):1287-1293.

Sumaryono W, Proksch P, Wray V, Witte L, Hartmann T. Qualitative and quantitative analysis of the phenolic constituents from Orthosiphon aristatus . Planta Med. 2007; 57(02):176-180.

Hawas UW, Abou El-Kassem LT, Shaher F, Al-Farawati R. In vitro inhibition of Hepatitis C virus protease and antioxidant by flavonoid glycosides from the Saudi costal plant Sarcocornia fruticosa. Nat Prod Res. 2019;33(23):3364-3371.

Kim S-H, Lee J, Jung Y, Hong A, Nam S-J, Lim B-K. Salvianolic acid B inhibit Hand-foot-mouth disease

enterovirus 71 replication through enhance AKT signling pathway. J Microbiol Biotechnol. 2019; 30(1):38-43.

Flechas MC, Ocazionez RE, Stashenko EE. Evaluation of invitro antiviral activity of essential oil compounds against dengue virus. Pharmacogn J. 2018; 10(1):55-59.

Hassanin O, Abdallah F, A.A.Galal A. In vitro and in vivo experimental trials to assess the modulatory influence of β-caryophyllene on NDV replication and immunopathogenesis. Comp Immunol Microbiol Infect Dis. 2020; 73:8p.

Yang Z, Wu N, Zu Y, Fu Y. Comparative anti-infectious bronchitis virus (IBV) activity of (-)-pinene: Effect on Nucleocapsid (N) Protein. Molecules. 2011; 16:1044-1054.

Juergens Ur, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebocontrolled trial. Respir Med. 2003; 97(3):250-256.

Asif M, Saleem M, Saadullah M, Yaseen HS, Al Zarzour R. COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacol. 2020;28(5):1153-1161.

Lai YN, Li Y, Fu LC, Zhao F, Liu N, Zhang FX, Xu PP. Combinations of 1,8-cineol and oseltamivir for the treatment of influenza virus A (H3N2) infection in mice. J Med Virol.2016; 89(7):1158-1167.

Kubiça T, Alves SH, Weiblen R, Lovato L. In vitroinhibition of the bovine viral diarrhoea virus by the essential oil of Ocimum basilicum (basil) and monoterpenes. Braz J Microbiol. 2014; 45:209-214.

Vimalanathan S. Anti-influenza virus activity of essential oils and vapors. Am J Essent Oils Nat Prod. 2014; 2:47-53.

Silva JKR da, Figueiredo PLB, Byler KG, Setzer WN. Essential oils as antiviral agents. potential of essential oils to treat SARS-CoV-2 infection: An in-silico investigation. Int J Mol Sci. 2020; 21(10):3426.

Lane T, Anantpadma M, Freundlich J, Davey R, Madrid P, Ekins S. The natural product eugenol is an inhibitor of the ebola virus in vitro. Pharm Res. 2019; 36(7):104.

Huang C, Zhu J, Wang L, Chu A, Yin Y, Vali K, Garmendia A, Tang Y. Cryptotanshinone protects porcine alveolar macrophages from infection with porcine reproductive and respiratory syndrome virus. Antiviral Res. 2020; 183:27.

Hossain MA, Ismail Z. Isolation and characterization of triterpenes from the leaves of Orthosiphon stamineus. Arab J Chem. 2013; 6(3):295-298.

Tohmé MJ, Gimenez MC, Peralta A, Colombo M, Delgui LR. Ursolic acid: A novel antiviral compound inhibiting rotavirus infection in vitro. Int J Antimicrob Agents. 2019;54(5):601-609.

Chen Y, Li H, Wu L, Zhang,M, Gao Y, Wang H, Xu D, Chen W, Song G, Chen J.. Ursolic acid derivatives are potent inhibitors against porcine reproductive and respiratory syndrome virus. RSC Adv. 2020; 10:22783-22796.

Pavlova NI, Savinova OV, Nikolaeva SN, Boreko EI, Flekhter OB. Antiviral activity of betulin, betulinic and betulonic acids against some enveloped and non-enveloped viruses. Fitoterapia. 2003; 74(5):489-492.

Hong E-H, Song J, Kang K Bin, Sung S, Ko H-J, Yang H. Anti-influenza activity of betulinic acid from Zizyphus jujuba on influenza A/PR/8 virus. Biomol Ther (Seoul). 2015;23:345-349.

Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, Lee CK, Chang ST, Kuo CJ, Lee SS, Hou CC, Hsiao PW, Chien SC, Shyur LF, Yang NS. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem. 2007;50(17):4087-4095