Occurrence of Extended Spectrum Beta Lactamase (ESBL) Producing Gram-Negative Bacteria in Wastewaters from Selected Hospitals in Ibadan, Oyo State, Nigeria
Main Article Content
Abstract
As an environmental antimicrobial resistance reservoir, untreated hospital wastewater plays a crucial role in the spread of antibiotic-resistant genes. The goal of this study was to look at the genetic drivers of ESBL resistance in Gram-negative bacteria isolates from hospital wastewater in Ibadan, Nigeria. A total of 408 bacterial isolates were obtained, with 54 being chosen for Polymerase Chain Reaction (PCR) testing due to resistance to more than three antibiotic classes. All the fifty-four ESBL producers were resistant to ceftazidime, while 40 (74.07%) showed resistance to cefotaxime. Percentage resistance to azithromycin, sulfamethoxazole trimethoprim, cefotaxime and streptomycin was 59.26 %, 64.81%, 74.07% and 75.93% respectively. Twenty seven of the ESBL- producing isolates representing 50.00 % was resistant to oxacillin. Moreover, percentage resistance to ciprofloxacin and cefepime was 38.89% and 31.48% respectively. BlaTEM-1 had the highest percentage frequency of occurrence of 85.19% while blaCTX-M had the least value of 7.41%. The percentage occurrence for resistant gene blaSHV-2, and blaSHV-1, was 20.37%, and 5.56% respectively. The presence of ESBL bacteria in hospital wastewater shows the role played by the discharge of untreated hospital wastewater in the horizontal spread of antibiotic resistance genes. As a result, Nigeria's tradition of discharging untreated hospital effluent into the environment poses a serious threat to public health.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Canton R and Morosini MI. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev. 2011; 35:977-991
Rolain JM, Canton R, Cornaglia G. Emergence of antibiotic resistance: need for a new paradigm. Clin Microbiol Infect. 2012; 18:615-616.
Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Burgmann H, Sorum H, Norstrom M, Pons MN, Kreuzainger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL. Tackling antibiotic resistance: the environmental framework. Nat Rev
Microbiol. 2015; 13:310-317
Adelowo OO, Caucci S, Banjo OA, Nnanna OC, Awotipe EO, Peters FB, Berendonk TU. Extended Spectrum BetaLactamase (ESBL)-producing bacteria isolated from hospital wastewaters, rivers and aquaculture sources in Nigeria. Environ Sci Poll Res. 2018; 25:2744–2755
Adekanmbi, AO, Akinpelu, MO, Olaposi, AV, Oyelade, AA. Diversity of Extended Spectrum Beta-lactamase (ESBL) genes in Escherichia coli isolated from wastewater generated by a Sick Bay located in a university health care facility. Gene Rep. 2020a; 20:100738.
Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum betalactamases: types, epidemiology and treatment. Saudi J Biol Sci. 2015; 22(1):90-101.
Bush K and Jacoby GA. Updated functional classification of b-lactamases. Minireview. Antimicrob Agents Chemother. 2010; 54:969-976.
Slama TG. Gram-negative antibiotic resistance: there is a price to pay. Crit Care. 2008; 12(Suppl. 4):1-7
Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Catry B, Herman L, Haesebrouck F, Butaye P. Diversity of extended-spectrum b-lactamases and class C betalactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrob. Agents Chemother. 2008; 52:1238-1243.
Verlicchi P, Galletti A, Petrovic M, Barceló D. Hospital effluents as a source of emerging pollutants: an overview of micro-pollutants and sustainable treatment options. J Hydrol. 2010; 389 (34):416-428.
Chagas TP, Seki LM, Cury JC, Oliveira JAL, Dávila AMR, Silva DM, Asensi MD. Multi-resistance, beta-lactamaseencoding genes and bacterial diversity in hospital wastewater in Rio de Janeiro, Brazil. J Appl Microbiol. 2011; 111:572–581.
Huang JJ, Hu HY, Lu SQ, Li Y, Tang F, Lu Y, Wei B. Monitoring and evaluation of antibiotic resistant bacteria at a municipal wastewater treatment plant in China. Environ Int. 2012; 42:31–36.
Santos LM, Gros M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barceló D, Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters. The Sci Total Environ. 2013; 461-462:302-316.
Rozman U, Darja D, Mojca C and Sonja Šostar T. Hospital wastewater effluent: hot spot for antibiotic resistant bacteria. J Water Sanit Hygiene Dev. 2020; 10(2):171-172.
Zhang L, Ma X, Luo L, Hu N, Duan J, Tang Z, Zhong R, Li Y. The Prevalence and Characterization of Extended-Spectrum β-Lactamase- and arbapenemase-Producing Bacteria from Hospital Sewage, Treated Effluents and Receiving Rivers. Int J Environ Res Pub Health. 2020:
(4):1-13.
Soriano-Moreno DR, Yareta J, Rojas-Cosi AF, FajardoLoyola A, Leon-Luna D, Castillo-Quezada I. Hospital effluents as a reservoir of beta-lactamase- and carbapenemase-producing enterobacteriaceae. Rev Peru Med Exp Salud Publica. 2021; 3 8(2):302-307.
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. In: CLSI supplement M100, 27th ed. Clinical and Laboratory Standards Institute, Wayne 2018: 1-332.
Bali EB, Acik L, Sultan N. Phenotypic and molecular characterization of SHV, TEM, CTX-M and extendedspectrum-β-lactamase produced by Escherichia coli, Acinetobacter baumannii and Klebsiella isolates in a Turkish hospital. Afr J Microbiol Res. 2010; 4(8):650-654.
Hocquet D, Muller A, Bertrand X. What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. J Hosp Infect. 2016; 93:395-402
Silva AAL and Hoffer E. Resistance to antibiotics and heavy metals in E. coli from marine environment. Environ Toxicol Water Qual. 1993; 8:1–11.
Prescott LM, Harley JP, Klein DA. Microbiology, New York: Mc Graw Hill. 1999; 4:678-697.
Adelowo OO, Odion OI, Knecht C, Vollmers J, Bhatia M, Kaster AK, Müller JA. A survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae in urban wetlands in southwestern Nigeria as a step towards generating prevalence maps of antimicrobial resistance.
PLoS One. 2020; 15:0229451.
Zhang L, Ma X, Luo L, Hu N, Duan J, Tang Z, Rujie Zhong R, Li Y. The Prevalence and Characterization of ExtendedSpectrum β-Lactamase- and Carbapenemase-Producing Bacteria from Hospital Sewage, Treated Effluents and Receiving Rivers. Int J Environ Res Pub Health. 2020;
(4):1183.
Mustapha A and Imir T. Detection of Multidrug-Resistance Gram-Negative Bacteria from Hospital Sewage in North East, Nigeria. Front Environ Microbiol. 2019; 5(1):1-7.
Mutasim EI, Mohammed A, Abdullah MA, Bahaeldin KE. Phenotypic Characterization and Antibiotic Resistance Patterns of Extended-Spectrum β-Lactamase- and AmpC β-Lactamase-Producing Gram-Negative Bacteria in a Referral Hospital, Saudi Arabia. Canadian 2 Volume 2019, Article ID 6054694, 9 pages.
Egbule, OS. Detection and Transfer of Extended Spectrum Beta Lactamase Enzymes from Untreated Hospital Waste Water. Adv Microbiol. 2016; 6:512-520.
Falodun OI and Olademeji OS. Extended Spectrum Beta Lactamase (ESBL) producing enteric bacteria from hospital wastewater, Ibadan, Nigeria. World News of Nat Sci. 2019; 22:62-74.
Asfaw T, Negash L, Kahsay A, Weldu Y. Antibiotic Resistant Bacteria from Treated and Untreated Hospital Wastewater at Ayder Referral Hospital, Mekelle, North Ethiopia. Adv Microbiol. 2017; 7:871-886.
Zagui GS, de Andrade LN, Moreira NC, Silva TV, Machado GP, da Costa Darini AL, Segura-Muñoz SI. Gram-negative bacteria carrying β-lactamase encoding genes in hospital and urban wastewater in Brazil. Environ Monit Assess. 2020; 192(6):376.
Calva JJ, Ceron E, Bojalil R, Holbrook A. Antibiotics consumption in community of Mexico City. II Survery of purchases at pharmacies. Boletin Medico Hospital Infantil de Mexico. 1993; 50:145-150.
Lau SM, Peng MY, Chang Y. The microbiology of a pharmaceutical effluent and its public health implications. World J Microbiol Biotechnol. 2004; 20:167-171.
Moges F, Endris M, Belyhun, Y, Worku W. Isolation and characterization of multiple drug resistance bacterial pathogens from wastewater in hospital and nonhospital environments, Northwest Ethiopia. BMC Res Notes. 2014; 7:215.
Rabbani MAG, Howlader MZH, Kabir Y. Detection of multidrug resistant (MDR) bacteria in untreated wastewater disposals of hospitals in Dhaka City, Bangladesh. J Glob Antimicrob Resist. 2017; 10:120-125.
Wang Q, Wang P, Yang Q. Occurrence and diversity of antibiotic resistance in untreated hospital water. Sci Total Environ. 2018; 621:990-999.
Maha HD, Naser EB, Mutasim EI, Mohamed EH. Prevalence of extended-spectrum β-lactamase (ESBL) and molecular detection of blaTEM, blaSHV and blaCTX-M genotypes among Enterobacteriaceae isolates from patients in Khartoum, Sudan. PanAfr Med J. 2020; 37:213.
Fils PEL, Cholley P, Gbaguidi-Haore H, Hocquet D, Sauget M, Bertrand X. ESBLproducing Klebsiella pneumoniae in a University hospital: Molecular features, diffusion of epidemic clones and evaluation of crosstransmission. PLoSONE 2021; 16(3):e0247875.
Ghafourian S, Zamberi S, Vasanthakumari N, Afra K, Mohammad R Nourkhoda S. Incidence of extendedspectrum beta-lactamase-producing Klebsiella pneumoniae in patients with urinary tract infection. Sao Paulo Med J. 2012; 130(1):37-43.
Müller-Schulte E, Tuo MN, Akoua-Koffi C, Schaumburg F, Sören LB. High prevalence of ESBL-producing Klebsiella pneumoniae in clinical samples from central Côte d’Ivoire. Int J Infect Dis. 2020; 91:207-209.
Fadare FT and Okoh AI. Distribution and molecular characterization of ESBL, pAmpC. β-lactamases, and non- β-lactam encoding genes in Enterobacteriaceae isolated from hospital wastewater in Eastern Cape Province, South Africa. PLoS ONE 2021; 16(7):1-17.
Nahla OE, Asmaa AA, Khalid A, Anand SD, Eman W, Sara HA, Hadi MY. Molecular characterization of extended spectrum β-lactamases enterobacteriaceae causing lower urinary tract infection among pediatric population. Antimicrob Resist Infect Contr. 2018; 7:90-99.
Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017; 41:252–275.
Coburn B, Grassl GA, Finlay BB. “Salmonella, the host and disease: a brief review,” Immunol Cell Biol. 2007; 85(2):112–118.
Seyedjavadi SS, Goudarzi M, Sabzehali F Relation between blaTEM, blaSHV and blaCTX-M genes and acute urinary tract
infections. J Acute Dis. 2016; 5:71–76.
Aleem M, Azeem AR, Rahmatullah S, Sidra Rahmatullah, Sufyan V, Shumyila N, Saadia A Prevalence of Bacteria and Antimicrobial Resistance Genes in HospitalWater and Surfaces. Cureus 2021; 13(10):18738.
Mohmmad B, Shahram SZ, Morteza SB, Alireza AM.Frequency of PER, VEB, SHV, TEM and CTX-M Genes in Resistant Strains of Pseudomonas aeruginosa Producing Extended Spectrum β-Lactamases. Jundishapur J Microbiol. 2015; 8(1):13783.
Shacheraghi F, Shakibaie MR, Noveiri H. Molecular Identification of ESBL genes blaGES-1, blaVEB-1, blaCTX-M blaOXA-1, blaOXA-4, blaOXA-10 and blaPER-1 in Pseudomonas aeruginosa strains isolated from burn patients by PCR, RFLP and sequencing techniques. Int J Biol life Sci. 2010; 3(6):138–142
Amirkamali S, Naserpour-Farivar T, Azarhoosh K, Peymani, A. Distribution of the blaOXA, bla VEB-1, and bla GES-1 genes and resistance patterns of ESBLproducing Pseudomonas aeruginosa isolated from hospitals in Tehran and Qazvin Iran. Rev Soc Bras Med Trop. 2017;
(3):315–320.
Khurana S, Mathur P, Kapil A, Valsan C, Behera B. Molecular epidemiology of beta-lactamase producing nosocomial Gram-negative pathogens from North and South Indian hospitals. J Med Microbiol. 2017; 66:999–1004.
Zeynudin A, Pritsch M, Schubert S, Messerer M, Liegl G, Hoelscher M, Belachew T, Wieser A. Prevalence and antibiotic susceptibility pattern of CTX-M type extendedspectrum β-lactamases among clinical isolates of gramnegative bacilli in Jimma, Ethiopia. BMC Infect Dis. 2018;
(1):524-533.