Antioxidant, Antibacterial and Antiplasmodial Activities of Galactogogue Plant Extracts doi.org/10.26538/tjnpr/v5i4.18

Main Article Content

Rattanapron Traisathit
Aphidech Sangdee
Komgrit Wongpakam
Sutthira Sedlak
Phongthon Kanjanasirirat
Suparerk Borwornpinyo
Thanyapit Thita
Rapatbhorn Patrapuvich
Prapairat Seephonkai

Abstract

Galactogogue plants have been used traditionally worldwide to stimulate lactation. Research on antioxidant, antibacterial and antimalarial activities of the galactogogue plants are limited to a few of its species. Thus, this work aims to evaluate in vitro antioxidant 2,2-diphenyl-1-picrydydrazyl (DPPH) radical and 2,2´-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical cation scavenging abilities, ferric reducing antioxidant power (FRAP), total phenolic content (TPC) and total flavonoid content (TFC)), and also  ntibacterial and antimalarial activities of sixteen galactogogue plants collected from northeastern Thailand. The antioxidant, antibacterial and antimalarial assays followed established procedures. Results indicated that the methanol and ethyl acetate extracts from the stem bark of Caesalpinia sappan (CS) and Ochna integerrima (OI) showed potent antioxidant capacity with the DPPH, ABTS and FRAP assays. These two particular plant extracts also possessed high TPC and moderate TFC. Both extracts of CS also exhibited good antibacterial activity, followed by extracts from OI which showed selective antibacterial activity toward three Gram-positive bacteria. The ethyl acetate extract from the stem bark of Siphonodon celastrineus (SCe), and the methanol and ethyl acetate extracts of Micromelum minutum (MM) also displayed strong antiplasmodial activity against Plasmodium falciparum. Our findings suggest that both CS and OI could be used as potential natural antioxidant and antibacterial (especially against Gram-positive bacteria) sources while MM and SCe could be promising alternative antimalarial plant for treating the P. falciparum parasites. 

Article Details

How to Cite
Traisathit, R., Sangdee, A., Wongpakam, K., Sedlak, S., Kanjanasirirat, P., Borwornpinyo, S., Thita, T., Patrapuvich, R., & Seephonkai, P. (2021). Antioxidant, Antibacterial and Antiplasmodial Activities of Galactogogue Plant Extracts: doi.org/10.26538/tjnpr/v5i4.18. Tropical Journal of Natural Product Research (TJNPR), 5(4), 698-706. https://tjnpr.org/index.php/home/article/view/688
Section
Articles

References

Newman DJ and Cragg GM. Natural products as source of new drugs from 1981-2014. J Nat Prod. 2016; 79:629-661.

Kennedy DO and Wightman EL. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Adv Nutr. 2011; 2(2):32-50.

Mortel M and Mehta SD. Systematic review of the efficacy of herbal galactogogues. J Hum Lact. 2013; 29(2):154-162.

Yeshi K, Kashyap S, Yangdon P, Wangchuk P. Taxonomical identification of Himalayan edible medicinal plants in Bhutan and the phenolic contents and antioxidant activity of selected plants. TBAP. 2017; 7(2):89-106.

Bodoira RM, Penci MC, Ribotta PD, Martínez ML. Chia (Salvia hispanica L.) oil stability: Study of the effect of natural antioxidants. LWT - Food Sci Technol. 2017; 75:107-113.

Pazoki-Toroudi H, Amani H, Ajami M, Nabavi SF, Braidy N, Kasi PD, Nabavi SM. Targeting mTOR signaling by polyphenols: a new therapeutic target for ageing. Ageing Res Rev. 2016; 31:55-66.

Kruczek M, Gumul D, Kačániová M, Ivanišhová E, Mareček Gambuś H. Industrial apple pomace by-products as a potential source of pre-health compounds in functional food. J microbiol biotechnol food sci. 2017; 7:22-26.

Bouarab-Chibane L, Degraeve P, Ferhout H, Bouajila J, Oulahal N. Plant antimicrobial polyphenols as potential natural food preservatives. J Sci Food Agric. 2019; 99:1457-1474.

Bouarab-Chibane L, Forquet V, Lantéri P, Clément Y, Léonard-Akkari L, Oulahal N, Degraeve P, Bordes C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) models. Front Microbiol. 2019; 10:1-23.

Corbel V, Nosten F, Thanispong K, Luxemburger C, Kongmee M, Chareonviriyaphap T. Challenges and prospects for dengue and malaria control in Thailand. Southeast Asia Trends Parasitol. 2013; 29(12):623-633.

Na-Bangchang K and Congpuong K. Current malaria status and distribution of drug resistance in East and Southeast Asia with special focus to Thailand. Tohoku J Exp Med. 2017; 211:99-113.

Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosentha PJ. Antiplasmodiall drug resistance: Literature review and activities and findings of the ICEMR network. Am J Trop Med Hyg. 2015; 93(3):57-68.

Nasir T and Van Heerden FR. Antiplasmodial natural products: an update. Malar J. 2019; 18(404): 2-62.

Seephonkai P, Samchai S, Thongsom A, Sunaart S, Kiemsanmuang B, Chakuton K. DPPH radical scavenging activity and total phenolics of Phellinus mushroom extracts collected from northeast Thailand. Chin J Nat Med. 2011; 9(6):441-445.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999; 26:1231-1237.

Benzie IF and Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996; 239:70-76.

Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002; 10(3):178-182.

Sangdee A, Sangdee K, Buranrat B, Thammawat S. Effects of mycelial extract and crude protein of the medicinal mushroom, Ophiocordyceps sobolifera, on the pathogenic fungus, Candida albicans. Trop J Phram Res. 2018; 17(12):2449-2454.

Bennett TN, Paguio M, Gligorijevic B, SeudieuC, Kosar AD, Davidson E, Roepe PD. Novel, rapid, and inexpensive cell-based quantification of Antiplasmodiall drug efficacy. Antimicrob Agents Chemother. 2004; 48(5):1807-1810.

Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. Simple and inexpensive fluorescence-based technique for high-throughput Antiplasmodiall drug screening. Antimicrob Agents Chemother. 2004; 48(5):1803-1806.

Trager W and Jensen JB. Human malaria parasites in continuous culture. 1976. Int J Parasitol. 2005; 91(3):484-486.

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 16(65;1-2):55-63.

Badami S, Moorkoth S, Rai SR, Kannan E, Bhojraj S. Antioxidant activity of Caesalpinia sappan heartwood. Biol Pharm Bull. 2003; 26:1534-1537.

Nirmal NP and Panichayupakaranant P. Antioxidant, antibacterial, and anti-inflammatory activities of standardized brazilin-rich Caesalpinia sappan extract. Pharm Biol. 2015; 53(9):1339-1343.

Lee YH, Choo C, Watawana MI, Jayawardena N, Waisundara VY. An appraisal of eighteen commonly consumed edible plants as functional food based on their antioxidant and starch hydrolase inhibitory activities. J Sci Food Agric. 2015; 95:2956-2964.

Bannar N, Oberoi HS, Sandhu SK. Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues. Crit Rev Food Sci Nutr. 2015; 55:319-337.

Sangdee K, Seephonkai P, Buranrat B, Surapong N, Sangdee A. Effects of ethyl acetate extracts from the Polycephalomyces nipponicus isolate Cod-MK1201 (Ascomycetes) against human pathogenic bacteria and a breast cancer cell line. Int J Med Mushrooms. 2016; 18(8):733-743.

Cushnie TPT, O’Driscoll NH, Lamb AJ. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell Mol Life Sci. 2016; 73:4471-4492.

Srinivasan R, Selvam GG, Karthik S, Mathivanan K, Baskaran R, Karthikeyan M, Gopi M, Govindasamy C. In vitro antimicrobial activity of Caesalpinia sappan L. Asian Pac J Trop Biomed. 2012; 1(1):S136-S139.

Kim KJ, Yu HH, Jeong SI, Cha JD, Kim SM, Yow YO. Inhibitory effects of Caesalpinia sappan on growth and invasion of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol. 2004; 91(1):81-87.

Sireeratawong P, Piyabhan T, Singhalak Y, Temsiririrkkul R, Punsrirat J, Ruangwises N, Saraya S, Lerdvuthisopon N, Jaijoy K. Toxicity evaluation of sappan wood extract in rats. J Med Assoc Thai. 2010; 93:S50-S57.

Nirmal NP, Rajput MS, Prasad RGSV, Ahmad M. Brazillin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac J Trop Med. 2015; 8(6):421-430.

Reutrakul V, Ningnuek N, Pohmakotr M, Yoosook C, Napaswad C, Kasisit J, Santisuk T, Tuchinda P. Anti HIV-1 flavonoid glycosides from Ochna integerrima. Planta Med. 2007; 73(7):683-688.

Likhitwitayawuid K, Kaewamatawong R, Ruangrunasi N. Mono- and bioflavonoids from Ochna integerrima. Biochem Syst Ecol. 2005; 33:527-536.

Cushnie TPT and Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005; 26:343-356.

Kaweetripob W, Mahidol C, Thongnest S, Prawat H, Ruchirawat S. Polyoxygenated ursane and oleanane triterpenes from Siphonodon celastrineus. Phytochemistry. 2016; 129:58-67.

Kaweetripob W, Mahidol C, Prawat H, Ruchirawat S. Lupane, friedelane, oleanane, and ursane triterpenes from the stem of Siphonodon celastrineus Griff. Phytochemistry. 2013; 96:404-417.

Niampoka C, Suttisri R, Bavovada R, Takayama H, Aimi N. Potentially cytotoxic triterpenoids from the root bark of Siphonodon celastrineus Griff. Arch Pharmacal Res (Seoul) 2005; 28(5):546-549.

Singha S, Yotmaneea P, Yahuafai J, Siripong P, Prabpai S, Sutthivaiyakit S. Siphonagarofurans A-J: Poly-O-acylated β-dihydroagarofuran sesquiterpenoids from the fruits of Siphonodon celastrineus. Phytochemistry. 2020; 174:112345.

Lekphrom R, Kanokmedhakul K, Sangsopha W. A new coumarin from the roots of Micromelum minutum. Nat Prod Res. 2016; 30(21):2383-2388.

Sakunpak A, Matsunami K, Otsuka H, Panichayupakaranant P. Isolation of new monoterpene coumarins from Micromelum minutum leaves and their cytotoxic activity against Leishmania major and cancer cells. Food Chem. 2013; 139(1-4):458-463.