Gene Expression Modulation of Apoptotic and Oestrogen Receptor Alpha Genes by Active Fractions of Selected Nigerian Plants on Cervical Cancer Cell Line (HeLa) doi.org/10.26538/tjnpr/v5i4.29
Main Article Content
Abstract
The roles of natural product in drug discovery and development cannot be over emphasised. It plays a vital role in human therapy and gives a better understanding on the cellular pathways.This study investigated the modulatory effects of partially purified fractions of Piper guineense Schumach. & Thonn. (Piperaceae), Zanthoxylum zanthoxyloides Lam. (Rutaceae), Amaranthus viridis L. (Amaranthaceae), Costus afer Ker-Gawl. (Zingiberaceae) and Catharanthus roseus (L.) G. Don. (Apocynaceae) on oestrogen receptor-α (ESR-α), tumour protein p53 (TP-53), retinoblastoma (RB) and NAD(P) H quinine oxidoreductase (NQO1) genes in cervical cancer cell line (HeLa cells). n-Hexane, ethylacetate, chloroform, and water fractions of 80% ethanol extracts of study plants were screened with brine shrimp lethality and water-soluble tetrazolium-1 (WST-1) cytotoxicity assay. HeLa cells were treated with 1:10 dilutions of IC50 concentrations of test fractions for 24 hours, total RNA was extracted, RNA quality was checked, and normalized to a baseline concentration. Gene expression were monitored by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Results showed that ESR-α was downregulated (p < 0.05) by P. guineense-hexane, C. roseus-chloroform and A. viridis-ethylacetate fractions. TP53 gene was up-regulated (p < 0.05) by P. guineense-hexane and Z. zanthoxyloides-ethylacetate fractions. None of the test fractions caused an up-regulation in the expression of retinoblastoma gene. NQO1 gene was down-regulated (p < 0.05) by C. roseus-chloroform, P. guineense-hexane, A. viridis, C. afer, and Z. zanthoxyloides ethylacetate fractions. Our study provides scientific evidence of the possible anti-proliferative potentials of C. roseus-chloroform, P. guineense-hexane, ethylacetate fractions of A. viridis, C.afer, and Z. zanthoxyloides in cervical cancer.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Raifu AO, El-Zein M, Sangwa-Lugoma G, Ramanakumar A, Walter SD, Franco EL, For the Congo creening Study G. Determinants of cervical cancer screening accuracy for visual inspection with acetic acid (via) and lugol’s iodine (vili) performed by nurse and physician. PLoS One. 2017;12(1):1-13.
Adepoju E, Ilori T, Olowookere S, Idowu A. Targeting women with free cervical cancer screening: Challenges and lessons learnt from osun state, southwest nigeria. Pan Afr Med J. 2016; 24:319-322.
Zhao J-W, Fang F, Guo Y, Zhu T-L, Yu Y-Y, Kong F-F, Han L-F, Chen D-S, Li F. Hpv16 integration probably contributes to cervical oncogenesis through interrupting tumor suppressor genes and inducing chromosome instability. J Exp Clin Cancer Res. 2016; 35:180-194.
Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci. 2006; 110:525-541.
Kumar S, Rizvi MA, Verma S. Handbook of Research on advancements in Cancer. 2021.
Oh S, Longworth M, Laimins L. Roles of the e6 and e7 proteins in the life cycle of low-risk human papillomavirus type 11. J Virol. 2004; 78(5):2620-2626.
Ramesh PS, Devegowda D, Singh A, Thimmulappa RK. Nrf2, p53, and p16: Predictive biomarkers to stratify human papillomavirus associated head and neck cancer patients for de-escalation of cancer therapy. Crit Rev Oncol Hematol. 2020; 148:102885.
Riggio AI, Blyth K. The enigmatic role of runx1 in female‐related cancers–current knowledge & future
perspectives. The FEBS J. 2017; 284(15):2345-2362.
Kumar A, Banerjee A, Singh D, Thakur G, Kasarpalkar N, Gavali S, Gadkar S, Madan T, Mahale SD, Balasinor N. Estradiol: A steroid with multiple facets. Horm Metab Res. 2018; 50(05):359-374.
Zhang B, Zhang J, Zhang C, Zhang X, Ye J, Kuang S, Sun G, Sun X. Notoginsenoside r1 protects against diabetic cardiomyopathy through activating estrogen receptor α and its downstream signaling. Front Pharmacol. 2018; 9:1227.
Peper JK, Schuster H, Löffler MW, Schmid-Horch B, Rammensee H-G, Stevanović S. An impedance-based cytotoxicity assay for real-time and label-free assessment of t-cell-mediated killing of adherent cells. J Immunol Methods. 2014;405:192-8.
Zhu Y, Liu Y, Zhang C, Chu J, Wu Y, Li Y, Liu J, Li Q, Li S, Shi Q. Tamoxifen-resistant breast cancer cells are resistant to DNA-damaging chemotherapy because of upregulated bard1 and brca1. Nature Commun. 2018;9(1):1-11.
Yadav AR, Mohite SK. Toxicоlogical evaluation of psidium guajava leaf extracts using brine shrimp (Artemia salina l.) model. Res J Pharm Dos Forms Technol. 2020;12(4):258-260.
NICEATM. Test method protocol for the nhk neutral red uptake cytotoxicity assayphase iii - validation study. The National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicol Methods. 2003:1-20.
Breljak D, Ambriovic-Ristov A, Kapitanovic S, Cacev T, Gabrilovac J. Comparison of three rt-pcr based methods for relative quantification of mrna. Food Technol Biotechnol. 2005; 43(4):379-388.
Fleige S, Pfaffl MW. Rna integrity and the effect on the real-time qrt-pcr performance. Mol Aspects Med. 2006;27(2):126-139.
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The miqe guidelines: Minimum information for publication of quantitative realtime pcr experiments. Clin Chem. 2009; 55(4)611-622.
Roth CM. Quantifying gene expression. Curr Issues Mol Biol. 2002; 4:93-100.
Lv Q, Xie L, Cheng Y, Shi Y, Shan W, Ning C, Xie B, Yang B, Luo X, He Q. A20-mediated deubiquitination f erα in the microenvironment of cd163+ macrophages sensitizes endometrial cancer cells to estrogen. Cancer Lett. 2019; 442:137-147.
Gbadamosi IT, Erinoso SM. A review of twenty ethnobotanicals used in the management of breast cancer in abeokuta, ogun state, nigeria. Afr J Pharm Pharmacol. 2016;10(27):546-564.
Sarah QS, Anny FC, Mir M. Brine shrimp lethality assay. Bangl J Pharmacol. 2017; 12(2):186-189.
Beaudenon S, Huibregtse JM. Hpv e6, e6ap and cervical cancer. BMC Biochem. 2008; 9(1):S4 (1-7).
Giacinti C, Giordano A. Rb and cell cycle progression. Oncogene. 2006; 25(38):5220-5227.
Gomez DT, Santos JL. Human papillomavirus infection and cervical cancer: Pathogenesis and epidemiology. Comm Curr Res Educ Top Trends Appl Microbiol. 2007; 1:680-688.
Awadallah NS, Dehn D, Shah RJ, Nash SR, Chen YK, Ross D, Bentz JS, Shroyer KR. Nqo1 expression in pancreatic cancer and its potential use as a biomarker. Appl Immunohistochem Mol Morphol. 2008; 16(1):24-31.
Buranrat B, Chau-In S, Prawan A, Puapairoj A, Zeekpudsa P, Kukongviriyapan V. Nqo1 expression correlates with cholangiocarcinoma prognosis. Asian Pac J Cancer Prev. 2012; 13:131-136.
Ma Y, Kong J, Yan G, Ren X, Jin D, Jin T, Lin L, Lin Z. Nqo1 overexpression is associated with poor prognosis in squamous cell carcinoma of the uterine cervix. BMC Cancer. 2014; 14(1):414-423.
Zhang J, Fan J, Li Y, Liang S, Huo S, Wang X, Zuo Y, Cui D, Li W, Zhong Z. Porcine parvovirus infection causes pig placenta tissue damage involving nonstructural protein 1 (ns1)-induced intrinsic ros/mitochondria-mediated apoptosis. Viruses. 2019; 11(4):389.
Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Rad Biol Med. 2010; 48(6):749-762.
Jaudan A, Sharma S, Malek SNA, Dixit A. Induction of apoptosis by pinostrobin in human cervical cancer cells: Possible mechanism of action. PLoS One. 2018; 13(2):e0191523.
Jeong C-H and Joo SH. Downregulation of reactive oxygen species in apoptosis. J Cancer Prev. 2016; 21(1):13.