Molecular Docking Assessment of Clinically Approved Antiviral Drugs against Mpro, Spike Glycoprotein and Angiotensin Converting Enzyme-2 Revealed Probable Anti-SARS-CoV-2 Potential doi.org/10.26538/tjnpr/v5i4.30

Main Article Content

Temitope I. Adelusi
Misbaudeen Abdul-Hammed
Emmanuel M. Ojo
Qudus K. Oyedele
Ibrahim D. Boyenle
Ibrahim O. Adedotun
Olamide T. Olaoba
Ajayi A. Folorunsho
Oladipo E. Kolawole

Abstract

Ever since the novel SARS-CoV-2 coronavirus was identified at Wuhan in China,  numerous researchers have been working on remedies to ameliorate the COVID-19 disease perpetrated by this deadly virus. Umpteen researchers engaged in silico approaches as a fast means of discovering drugs with potential inhibitory activity against SARS-CoV-2 to combat the COVID-19 pandemic. In this computational study, FDA approved antiretroviral, anti-Ebola, and anti-SARS drugs were docked against SARS-COV-2 Mpro (6LU7), Prefusion 2019-nCoV Spike glycoprotein (6VSB), the peptidase domain of human ACE2 (2AJF) and SARS-CoV 3CL protease (2ZU4) in order to detect the drugs with the best binding affinity for the active sites of these proteins. The top 3 drugs for each class of drugs show strong binding affinities from -7.5 - -9.2 Kcal/mol. The docking result shows the consistent score of Saquinavir, Amodiaquine, Clomiphene, Indinavir, Lopinavir, Maraviroc, Nelfinavir, and Verapamil across those proteins. However, our results indicate that indinavir, saquinavir and maraviroc with considerable binding affinity might be further optimized in preclinical and clinical studies to determine their role in the management of COVID-19. Furthermore, we noticed that the amino acid residues common to 6LU7-ligand complexes and 2ZU4-ligand complexes include Glu166, Cys145, and Met49. We therefore conclude that these residues could be critical to their functional and catalytic potentials. These residues could also be a critical component of their conserved domain that forms catalytic dyad because our result falls in line with others where His41 and Cys145 were reported to be conserved residues at Mpro active site. 

Article Details

How to Cite
Adelusi, T. I., Abdul-Hammed, M., Ojo, E. M., Oyedele, Q. K., Boyenle, I. D., Adedotun, I. O., Olaoba, O. T., Folorunsho, A. A., & Kolawole, O. E. (2021). Molecular Docking Assessment of Clinically Approved Antiviral Drugs against Mpro, Spike Glycoprotein and Angiotensin Converting Enzyme-2 Revealed Probable Anti-SARS-CoV-2 Potential: doi.org/10.26538/tjnpr/v5i4.30. Tropical Journal of Natural Product Research (TJNPR), 5(4), 778-791. https://tjnpr.org/index.php/home/article/view/677
Section
Articles

References

Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020; 16(24):91-98.

Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, Tsoi HW, Lo SK, Chan KH, Poon VK, Chan WM, Ip JD, Cai JP, Cheng VC, Chen H, Hui CK, Yuen KY. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020; 15(395):514-523.

Mackenzie JS and Smith DW. COVID-19: a novel zoonotic disease caused by a coronavirus from China: what we know and what we don't. Microbiol Aust. 2020; 17:MA20013.

Han Y, Du J, Su H, Zhang J, Zhu G, Zhang S, Wu Z and Jin Q. Identification of Diverse Bat Alphacoronaviruses and Betacoronaviruses in China Provides New Insights into the Evolution and Origin of Coronaviruses-Related Diseases. Front Microbial. 2019; 10(15):19-25.

Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol. 2020; 92(4):401-402.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323(11):1061-1069.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang E, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):199-207.

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5(4):536-544.

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L.

Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10223):507-513.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497-506.

Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013; 503(7477):535-8.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565-574.

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579(7798):265-269.

Yelin Han, Jiang Du, Haoxiang Su, Junpeng Zhang, Guangjian Zhu, Shuyi Zhang, Zhiqiang Wu, and Qi Jin. Characterization of a filovirus (Mengla virus) from Rousettus bats in China. Nat Microbiol. 2019; 4:390-395.

Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO, Spahn JE, Bauer L, Sellers S, Porter D, Feng JY, Cihlar T, Jordan R, Denison MR, Baric RS. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020; 11(1):222.

Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spittes C, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Petal A, Gerber SI, Kim L, Tong S, Lu X, Lindstorm S, Pallansch MA, Welson WC, Biggs-Hm, Uyeki TM, Pillai SK. Washington State 2019-nCoV Case investigation Team. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020; 384(10):929-936.

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30(3):269-271.

Cao YC, Deng QX, Dai SX. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med Infect Dis. 2020; 35:101647.

Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020; 9(1):221-236.

Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, Zhang X, Gao GF. Cryo-EM structures of MERSCoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun. 2017; 8:15092.

Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, Cameroni E, Gopal R, Dai M, Lanzavecchia A, Zambon M, Rey FA, Corti D, Veesler D. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell. 2019; 176(5):1026-1039.

Trott O and Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455-461.

Computed Atlas for Surface Topography of Proteins (CASTp) (http://sts.bioe.uic.edu/castp/index.html?2011)

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 181(2):281-292.

Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, Wong SK, Huang IC, Xu K, Vasilieva N, Murakami A, He Y, Marasco WA, Guan Y, Choe H, Farzan M. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24(8):1634-1643.

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020; 94(7):e00127-20.

Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, Raizada MK, Grant MB, Oudit GY. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the ReninAngiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020; 126(10):1456-1474.

Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020; 9(1):221-236.

Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses. 2020; 12(2):135.

Hilgenfeld R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J. 2014;281(18):4085-96.

Palese LL. The Structural Landscape of SARS-CoV-2 Main Protease: Hints for Inhibitor Search. ChemRxiv. 2020; 4(10):44-49.

against the cowpea beetle, Callosobruchus maculatus(Fabricius). Biopest Int. 2011; 7(1):15-23.

Anioke I, Okwuosa C, Uchendu I, Chijioke O, Dozie-Nwakile O, Ikegwuonu I, Kalu P, Okafor M. Investigation into Hypoglycemic, Antihyperlipidemic, and Renoprotective Potentials of Dennettia tripetala (Pepper Fruit) Seed in a Rat Model of Diabetes. BioMed Res Int. 2017; 2017.