Preparation of Curcumin and Quercetin Multicomponent Crystals Via Solvent-Drop Grinding doi.org/10.26538/tjnpr/v5i4.14
Main Article Content
Abstract
Curcumin, a major component of Curcuma longa L. (turmeric), has several pharmacological activities; however, its use in pharmaceuticals is limited by poor water solubility. This work sought to improve the solubility of curcumin by preparing it as multicomponent crystals (MC) with quercetin as the co-former. The optimal mole ratio for preparing the curcumin-quercetin MC was determined from a binary phase diagram of their binary mixtures (BMs) at mole ratios of 0.1:0.9 to 0.9:0.1. This ratio was used to prepare the MC by the solvent-drop grinding method in ethanol. MC were characterized using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FT-IR) spectroscopy. A simple eutectic mixture formed in the BM at a 0.7:0.3 mole ratio. PXRD results showed a decrease in the intensity of the diffraction patterns, indicating a decrease in the MC crystallinity. Similarly, the DSC thermogram revealed a reduced curcumin endothermic peak in the MC at 171.74 °C. The FT-IR spectrum showed minimal shift of the MC absorption peak. Following sonication in 40 % ethanol for 30 min, the quantity of dissolved curcumin was determined by high performance liquid chromatography at 422 nm using methanol:distilled water (80:20) as the mobile phase. The solubility of the MC and pure curcumin were 124.28 ± 7.076 mg/100 mL and 93.93 ± 6.656 mg/100 mL, respectively, indicating that the curcumin-quercetin MC were more soluble than pure curcumin.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Ahmad RS, Hussain MB, Sultan MT, Arshad MS, Waheed M, Shariati MA, Plygun S, Hashempur MH. Biochemistry, safety, pharmacological activities, and clinical applications of turmeric: a mechanistic review. Evid-Based Compl Altern Med. 2020; 2020:7656919.
Rivera-Mancía S, Trujillo J, Chaverri JP. Utility of curcumin for the treatment of diabetes mellitus: evidence from preclinical and clinical studies. J Nutr Intermed Metab. 2018; 14:29-41.
Kharat M, Du Z, Zhang G, McClements DJ. Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature, and molecular environment. J Agric Food Chem. 2017; 65(8):1525-1532.
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007; 4(6):807-818.
Carolina Alves R, Perosa Fernandes R, Fonseca-Santos B, Damiani Victorelli F, Chorilli M. A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit Rev Anal Chem. 2019; 49(2):138-149.
Sanphui P and Bolla G. Curcumin, a biological wonder molecule: a crystal engineering point of view. Cryst Growth Des. 2018; 18(9):5690-5711.
Chen Y, Wu Q, Zhang Z, Yuan L, Liu X, Zhou L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules. 2012; 17(5):5972-5987.
Xu D, Wang S, Jin J, Mei X, Xu S. Dissolution and absorption researches of curcumin in solid dispersions with the polymers PVP. Asian J Pharmacodyn Pharmacokinet. 2006; 6(4):343-349.
Zhou H, Wang W, Hu H, Ni X, Ni S, Xu Y, Yang L, Xu D. Coprecipitation of calcium carbonate and curcumin in an ethanol medium as a novel approach for curcumin dissolution enhancement. J Drug Deliv Sci Technol. 2019; 51(1):397-402.
Ban C, Jo M, Park YH, Kim JH, Han JY, Lee KW, Kweon DH, Choi YJ. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem. 2020; 302:125328.
Grothe E, Meekes H, Vlieg E, Ter Horst JH, De Gelder R. Solvates, salts, and cocrystals: a proposal for a feasible classification system. Cryst Growth Des. 2016; 16(6):3237-3243.
Zaini E, Afriyani, Fitriani L, Ismed F, Horikawa A, Uekusa H. Improved solubility and dissolution rates in novel multicomponent crystals of piperine with succinic acid. Sci Pharm. 2020; 88(21):1-12.
Zaini E, Sumirtapura YC, Halim A, Fitriani L, Soewandhi SN. Formation and characterization of sulfamethoxazoletrimethoprim cocrystal by milling process. JAppl Pharm Sci. 2017; 7(12):169-173.
Zaini E, Fitriani L, Sari RY, Rosaini H, Horikawa A, Uekusa H. Multicomponent crystal of mefenamic acid and n-methyl-dglucamine: crystal structures and dissolution sudy. J Pharm Sci. 2019; 108(7):2341-2348.
Setyawan D, Jovita RO, Iqbal M, Paramanandana A, Yusuf H, Lestari MLAD. Co-crystalization of quercetin and malonic acid using solvent-drop grinding method. Trop J Pharm Res. 2018; 17(6):997-1002.
Sanphui P, Goud NR, Khandavilli UBR, Bhanoth S, Nangia A. New polymorphs of curcumin. Chem Commun. 2011; 47(17):5013-5015.
Sathisaran I and Dalvi SV. Crystal engineering of curcumin with salicylic acid and hydroxyquinol as coformers. Cryst Growth Des. 2017; 17(7):3974-3988.
Borghetti GS, Carini JP, Honorato SB, Ayala AP, Moreira JCF, Bassani VL. Physicochemical properties and thermal stability of quercetin hydrates in the solid state. Thermochim Acta. 2012; 539:109-114.
Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch‐Ernst KI, Lampen A. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 2018; 62(1):1-15.
Hewlings S and Kalman D. Curcumin: a review of its effects on human health. Foods. 2017; 6(10):92-103.
Challa VR, Ravindra Babu P, Challa SR, Johnson B, Maheswari C. Pharmacokinetic interaction study etween quercetin and valsartan in rats and in vitro models. Drug Dev Ind Pharm. 2013; 39(6):865-872.
Babu PR, Babu KN, Peter PLH, Rajesh K, Babu PJ. Influence of quercetin on the pharmacokinetics of ranolazine in rats and in vitro models. Drug Dev Ind Pharm. 2013; 39(6):873-879.
Alexander A, Qureshi A, Kumari L, Vaishnav P, Sharma M, Saraf S, Saraf S. Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients. Fitoter. 2014; 97:1-14.
Vaz GR, Clementino A, Bidone J, Villetti MA, Falkembach M, Batista M, Barros P, Sonvico F, Dora C. Curcumin and quercetin-loaded nanoemulsions: physicochemical compatibility study and validation of a simultaneous quantification method. Nanomater. 2020; 10(9):1650.
Cherukuvada S and Row TNG. Comprehending the formation of eutectics and cocrystals in terms of design and their structural interrelationships. Cryst Growth Des. 2014; 14(8):4187-4198.
Katritzky AR, Jain R, Lomaka A, Petrukhin R, Maran U, Karelson M. Perspective on the relationship between melting points and chemical structure. Cryst Growth Des. 2001; 1(4):261-265.
Yuliandra Y, Izadihari R, Rosaini H, Zaini E. Multicomponent crystals of mefenamic acid–tromethamine with improved dissolution rate. J Res Pharm. 2019; 23(6):988-996.
Zaini E, Sumirtapura YC, Soewandhi SN. Identifikasi interaksi fisika antara trimetoprim dan sulfametoksazol dengan metode kontak kofler dan reaksi kristalisasi. Maj Farm Indones. 2010; 21(1):32-39.
Dwichandra Putra O, Yonemochi E, Uekusa H. Isostructural multicomponent gliclazide crystals with improved solubility. Cryst Growth Des. 2016; 16(11):6568-6573.
Singh R. HPLC method development and validation-an overview. J Pharm Educ Res. 2013; 4(1):26-33.
Sahu PK, Ramisetti NR, Cecchi T, Swain S, Patro CS, Pana J. An overview of experimental designs in HPLC method development and validation. J Pharm Biomed Anal. 2018; 147:590-611.
Vial J and Jardy A. Experimental comparison of the different approaches to estimate LOD and LOQ of an HPLC method. Anal Chem. 1999; 71(14):2672-2677.
Sanphui P, Goud NR, Khandavilli UBR, Nangia A. Fast dissolving curcumin cocrystals. Cryst Growth Des. 2011; 11(9):4135-4145.