Comprehensive GC-MS Profiling of Bioactive Compounds in Lampeni (Ardisia humilis) Leaves from Lampung, Indonesia: A Potential Source of Therapeutic Agents
Main Article Content
Abstract
Ardisia humilis, or Lampeni in Indonesia, is one of the well-known medicinal plants. Studies have shown that Lampeni has antihyperglycemic, antihypercholesterolemic, antiplatelet, antiviral, antibacterial, antiplasmodial, and antiproliferative activities in cancer cell lines. Some bioactive compounds in Lampeni leaves are α-amyrin, β-amyrin, and bergenin. However, scientific investigations on its bioactive compounds remain limited. This study aimed to analyze the profile of bioactive compounds of Lampeni using Gas Chromatography-Mass Spectrophotometry (GC-MS). Powdered lampeni leaves were extracted, and fractionated with solvents of varying polarities. The bioactive compounds profile of the extracts and fractions were determined by gas chromatography-mass spectrometry (GC-MS) analysis. The chemometric profile of the identified compounds were also analyzed. Results from the GC-MS analysis identified a total of 76 compounds in the different extracts and fractions of Lampeni leaves. Major compounds in the methanol extract were α-amyrin and β-amyrin; major compounds in the 96% ethanol extract were olean-12-en-3-ol and α-amyrin; major compounds in the 70% ethanol extract were olean-12-en-3-ol and α-amyrin; major compounds in the 50% ethanol extract were butanal, 3-methyl (isovaleraldehyde) and 9-octadecadienoic acid (Z)-, methyl ester; major compounds in the n hexane fraction were α-amyrin and β-amyrin; major compound in the ethyl acetate fraction was pyrogallol; and major compounds in the butanol fraction were 2-furancarboxaldeyde,5-(hydroxymethyl)- and 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-. Overall, the major compounds in Lampeni leaves are α-amyrin and β-amyrin, which were found in the methanol extract, 96% ethanol extract, 70% ethanol extract, and n-hexane fraction.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Flora of China Editorial Committee. Flora of China. St. Louis, MO and Cambridge, MA: Missouri Botanical Garden and Harvard University Herbaria; 2015. http://www.efloras.org/flora_page.aspx?flora_id=2
2.Alias NZ and Ishak NKM. Chemical Constituents and Bioactivity Studies of Ardisia Elliptica. Open Conf Proc J. 2014; 5(1):1-4. https://doi.org/10.2174/2210289201405020001
3.Ningsih S, Juniarti F, Rosidah I, Fajriawan AA, Agustini K, Rosmalawati S, Wahyuni FS, Widowati L, Suhartanto TA, Sari DRT. Study of the Effect of Lampeni (Ardisia humilis Vahl.) Planting Condition Toward the Alpha-glucosidase Inhibition Activity in Vitro. Pharmacogn J. 2020; 12(2):377-385. doi:10.5530/pj.2020.12.59
4.Agustini K, Rosidah I, Ngatinem N, Ningsih S, Effendi J, Amin M, Suryohastari B. Effect of Ardisia elliptica Thunb. on Diabetes Mellitus Type 2 Rat Models. In: Herawati F, Putra ATS, editors. Proceedings of the 7th International Conference on Public Health (ICOPH 2020). European Alliance for Innovation; 2023: 474-481. https://doi:10.2991/978-94-6463-112-8_65
5.Nugraha AS, Triatmoko B, Wangchuk P, Keller PA. Vascular Epiphytic Medicinal Plants as Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities. Biomolecules. 2020; 10(2):181. https://doi:10.3390/biom10020181
6.Jadid N, Kurniawan E, Himayani CES, Andriyani A, Prasetyowati I, Purwani KI, Muslihatin W, Hidayati D, Tjahjaningrum ITD. An Ethnopharmacological Study of Medicinal Plants Used by the Tengger Tribe in Ngadisari Village, Indonesia. PLoS One. 2020; 15(10):e0240323. https://doi.org/10.1371/journal.pone.0240323
7.Rohloff J. Analysis of Phenolic and Cyclic Compounds in Plants Using Derivatization Techniques in Combination With GC-MS-Based Metabolite Profiling. Molecules. 2015; 20(2):3431-3462. https://doi:10.3390/molecules20023431
8.Kumar A. Gas Chromatography Mass Spectrometry (GC-MS) Analysis of Lemongrass Leaves: Identification of Bioactive Compounds and Their Potential Application. Res J Chem Environ. 2024; 28(1):60-66. https://doi:10.25303/285rjce060066
9.Liu B, Liu R, Liu Q, Ashby CR Jr, Zhang H, Chen ZS. The Ethnomedicinal and Functional Uses, Phytochemical and Pharmacology of Compounds From Ardisia Species: An Updated Review. Med Res Rev. 2022; 42(5):1888-1929. https://doi:10.1002/med.21894
10.Tambun R, Alexander V, Ginting Y. Performance Comparison of Maceration Method, Soxhletation Method, and Microwave-Assisted Extraction in Extracting Active Compounds from Soursop Leaves (Annona muricata): A Review. IOP Conf Ser: Mater Sci Eng. 2021; 1122(1):012095. https://doi.org/10.1088/1757-899X/1122/1/012095
11.Abubakar AR and Haque M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J Pharm Bioallied Sci. 2020; 12(1):1-10. https://doi:10.4103/jpbs.JPBS_175_19
12.Jha AK and Sit N. Extraction of Bioactive Compounds from Plant Materials Using Combination of Various Novel Methods: A Review. Trends Food Sci Technol. 2022; 119:579-591. https://doi.org/10.1016/j.tifs.2021.11.019
13.Borges A, José H, Homem V, Simões M. Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. Antibiotics (Basel). 2020; 9(2):48. https://doi:10.3390/antibiotics9020048
14.Nawaz H, Shad M, Rehman N, Andaleeb H, Ullah N. Effect of Solvent Polarity on Extraction Yield and Antioxidant Properties of Phytochemicals from Bean (Phaseolus vulgaris) Seeds. Braz J Pharm Sci. 2020; 56:e17129. https://doi:10.1590/s2175-97902019000417129
15.Kobus Z, Wilczyński K, Nadulski R, Rydzak L, Guz T. Effect of Solvent Polarity on The Efficiency of Ultrasound-Assisted Extraction Of Polyphenols From Apple Pomace. Acta Sci Pol Technol Aliment. 2017; 16(2):158-163. https://doi:10.24326/fmpmsa.2017.29
16.Greim H. Ethylene Glycol Mono-n-Butyl Ether. In: Wexler P, ed. Encyclopedia of Toxicology. 4th ed. Academic Press; 2024; 483-488 p. https://doi.org/10.1016/B978-0-12-824315-2.00251-7
17.2-Butoxyethanol. National Center for Biotechnology Information. PubChem Compound Database. https://pubchem.ncbi.nlm.nih.gov/compound/2-Butoxyethanol. Accessed March 28, 2025.
18.Gómez-Pulido LDM, González-Cano RC, Benítez JJ, Domínguez E, Heredia A. Structural Analysis of Mixed α- and β-Amyrin Samples. R Soc Open Sci. 2022; 9(4):211787. https://doi:10.1098/rsos.211787
19.Cardoso BK, de Oliveira HLM, Melo UZ, Fernandez CMM, de Araújo Almeida Campo C, Gonçalves JE, Laverde A Jr, Romagnolo MB, Linde GA, Gazim ZC. Antioxidant Activity of α and β-Amyrin Isolated from Myrcianthes pungens Leaves. Nat Prod Res. 2020; 34(12):1777-1781. https://doi:10.1080/14786419.2018.1525715
20.Nakkala K, Kulkarni V, Laddha KS. Extraction and Isolation of B-Amyrin From Ficus Elastica. Indian Drugs. 2023; 60(10):83-86. https://doi.org/10.53879/id.60.10.13408
21.Neto SF, Prada AL, Achod LDR, Torquato HFV, Lima CS, Paredes-Gamero EJ, Silva de Moraes MO, Lima ES, Sosa EH, de Souza TP, Amado JRR. α-Amyrin-Loaded Nanocapsules Produce Selective Cytotoxic Activity in Leukemic Cells. Biomed Pharmacother. 2021; 139:111656. https://doi.org/10.1016/j.biopha.2021.111656
22.Rini TDP, Sangande F, Agustini K, Bahtiar A. Identification and Analysis of Ardisia humilis as Potential Antihyperlipidemic by Network Pharmacology Followed by Molecular Docking. Res J Pharm Technol. 2024; 17(5):2009-2017. doi:10.52711/0974-360X.2024.00318
23.Li Y, Wang J, Li L, Song W, Li M, Hua X, Wang Y, Yuan J, Xue Z. Natural Products of Pentacyclic Triterpenoids: From Discovery to Heterologous Biosynthesis. Nat Prod Rep. 2023; 40(7):1303-1353. https://doi.org/10.1039/D2NP00063F
24.Sathish Kumar P, Viswanathan MBG, Venkatesan M, Balakrishna K. Bauerenol, a Triterpenoid from Indian Suregada angustifolia: Induces Reactive Oxygen Species-Mediated P38MAPK Activation and Apoptosis in Human Hepatocellular Carcinoma (HepG2) Cells. Tumour Biol. 2017; 39(4):1010428317698387. https://doi:10.1177/1010428317698387
25.Rufino-Palomares EE, Perez-Jimenez A, Reyes-Zurita F, Garcia- Salguero L, Mokhtari K, Herrera-Merchan A, Medina P, Peragon J, Lupianez J. Anticancer and Anti-angiogenic Properties of Various Natural Pentacyclic Tri-terpenoids and Some of Their Chemical Derivatives. Curr Org Chem. 2015; 19(10):929-943.
26.Malík M, Velechovský J, Tlustoš P. Natural Pentacyclic Triterpenoid Acids Potentially Useful as Biocompatible Nanocarriers. Fitoterapia. 2021; 151:104845. https://doi:10.1016/j.fitote.2021.104845
27.Ren Y and Kinghorn AD. Natural Product Triterpenoids and Their Semi-Synthetic Derivatives with Potential Anticancer Activity. Planta Med. 2019; 85(11-12):802-814. https://doi:10.1055/a-0832-2383
28.Jo HJ, Han JY, Hwang HS, Choi YE. β-Amyrin Synthase (EsBAS) and β-Amyrin 28-Oxidase (CYP716A244) in Oleanane-Type Triterpene Saponin Biosynthesis in Eleutherococcus senticosus. Phytochemistry. 2017; 135:53-63. https://doi:10.1016/j.phytochem.2016.12.011
29.Shan H, Wilson WK, Castillo DA, Matsuda SP. Are Isoursenol and γ-Amyrin Rare Triterpenes in Nature or Simply Overlooked by Usual Analytical Methods? Org Lett. 2015; 17(16):3986-3989. https://doi.org/10.1021/acs.orglett.5b01851
30.Romero-Estrada A, Boto A, González-Christen J, Romero-Estudillo I, Garduño-Ramírez ML, Razo-Hernández RS, Marquina S, Maldonado-Magaña A, Columba-Palomares MC, Sánchez-Carranza JN, Alvarez L. Synthesis, Biological Evaluation, and Molecular Docking Study of 3-Amino and 3-Hydroxy-seco A Derivatives of α-Amyrin and 3-Epilupeol as Inhibitors of COX-2 Activity and NF-kB Activation. J Nat Prod. 2022; 85(4):787-803. https://doi.org/10.1021/acs.jnatprod.1c00827
31.Uranga CC, Beld J, Mrse A, Córdova-Guerrero I, Burkart MD, Hernández-Martínez R. Fatty Acid Esters Produced by Lasiodiplodia theobromae Function as Growth Regulators in Tobacco Seedlings. Biochem Biophys Res Commun. 2016; 472(2):339-345. https://doi:10.1016/j.bbrc.2016.02.104
32.Ko GA and Kim CS. Ethyl Linoleate Inhibits α-MSH-Induced Melanogenesis Through Akt/GSK3β/β-Catenin Signal Pathway. Korean J Physiol Pharmacol. 2018; 22(1):53-61. https://doi:10.4196/kjpp.2018.22.1.53
33.Afzal MI, Ariceaga CC, Boulahya KA, Jacquot M, Delaunay S, Cailliez-Grimal C. Biosynthesis and Role of 3-Methylbutanal in Cheese by Lactic Acid Bacteria: Major Metabolic Pathways, Enzymes Involved, and Strategies for Control. Crit Rev Food Sci Nutr. 2017; 57(2):399-406. https://doi:10.1080/10408398.2014.893502
34.Brandsma JB, Rustandi N, Brinkman J, Wolkers-Rooijackers JCM, Zwietering M, Smid E. Pivotal Role of Cheese Salting Method for the Production of 3‐Methylbutanal by Lactococcus lactis. Int J Dairy Technol. 2022; 75(1):185-196. https://doi:10.1111/1471-0307.12839
35.Pinto MEA, Araújo SG, Morais MI, Sá NP, Lima CM, Rosa CA, Siqueira EP, Johann S, Lima LARS. Antifungal and Antioxidant Activity of Fatty Acid Methyl Esters from Vegetable Oils. An Acad Bras Cienc. 2017; 89(3):1671-1681. https://doi:10.1590/0001-3765201720160908
36.Ishii M, Nakahara T, Ikeuchi S, Nishimura M. β-Amyrin Induces Angiogenesis in Vascular Endothelial Cells Through the Akt/Endothelial Nitric Oxide Synthase Signaling5 Pathway. Biochem Biophys Res Commun. 2015; 467(4):676-682. https://doi:10.1016/j.bbrc.2015.10.085
37.Han G and Lee DG. Antibacterial Mode of Action of β-Amyrin Promotes Apoptosis-Like Death in Escherichia coli by Producing Reactive Oxygen Species. J Microbiol Biotechnol. 2022; 32(12):1547-1552. https://doi:10.4014/jmb.2209.09040
38.Xu W, Zhang H, Zhang Q, Xu J. β-Amyrin Ameliorates Diabetic Nephropathy in Mice and Regulates the miR-181b-5p/HMGB2 Axis in High Glucose-Stimulated HK-2 Cells. Environ Toxicol. 2022; 37(3):637-649. https://doi:10.1002/tox.23431
39.Cai Z, Liu J, Bian H, Cai J. β-Amyrin Ameliorates Pulmonary Fibrosis by Inhibiting Inflammatory Response and Oxidative Stress in Mice. Pak J Pharm Sci. 2023; 36(2):431-436.
40.Da Silva Júnior WF, Bezerra de Menezes DL, de Oliveira LC, Koester LS, Oliveira de Almeida PD, Lima ES, de Azevedo EP, da Veiga Júnior VF, Neves de Lima ÁA. Inclusion Complexes of β and HPβ-Cyclodextrin with α, β Amyrin and In Vitro Anti-Inflammatory Activity. Biomolecules. 2019; 9(6):241. https://doi:10.3390/biom9060241
41.Santos FA, Frota JMA, Arruda BRS, Melo TS, Silva ARS, Brito GAM, Chaves MH, Rao VSN. Antihyperglycemic and Hypolipidemic Effects of α, β-Amyrin, a Triterpenoid Mixture from Protium heptaphyllum in Mice. Lipids Health Dis. 2012; 11:98. https://doi.org/10.1186/1476-511X-11-98
42.Ipav SS, Igoli JO, Tor-Anyiin TA, Anyam JV. Isolation and Characterization of Alpha and Beta Amyrins From Propolis Obtained from Benue State. J Chem Soc Nigeria. 2022; 47(2):250-256.
43.Park HJ, Kwon H, Lee JH, Cho E, Lee YC, Moon M, Jun M, Kim DH, Jung JW. β-Amyrin Ameliorates Alzheimer's Disease-Like Aberrant Synaptic Plasticity in the Mouse Hippocampus. Biomol Ther (Seoul). 2020; 28(1):74-82. https://doi:10.4062/biomolther.2019.024
44.Zahid S, Malik A, Waqar S, Zahid F, Tariq N, Khawaja AI, Safir W, Gulzar F, Iqbal J, Ali Q. Countenance and Implication of β-sitosterol, β-amyrin and Epiafzelechin in Nickel Exposed Rat: In-silico and In-vivo Approach. Sci Rep. 2023; 13:21351. https://doi.org/10.1038/s41598-023-48772-4
45.Fernandes C, Correa A, Cruz R, Botas G, SIlva-Filho M, Santos M, Brito M, Rocha L. Anticholinesterase Activity of Manilkara subsericea (Mart.) Dubard Triterpenes. Lat Am J Pharm. 2011; 30(9):1631-1634.
46.Singh D, Arya PV, Sharma A, Dobhal MP, Gupta RS. The modulatory potential of α-amyrin against hepatic oxidative stress through antioxidant status in Wistar albino rats. J Ethnopharmacol. 2015; 161:186-193. https://doi:10.1016/j.jep.2014.12.025
47.Okoye NN, Ajaghaku DL, Okeke HN, Ilodigwe EE, Nworu CS, Okoye FB. Beta-amyrin and Alpha-amyrin Acetate Isolated from the Stem Bark of Alstonia boonei Display Profound Anti-inflammatory Activity. Pharm Biol. 2014; 52(11):1478-1486. https://doi:10.3109/13880209.2014.898078
48.Mirunalini S, Stainsloss I, Vaithiyanathan V. Antiproliferative Effect of Alpha Amyrin on Hep2 Cells by Inducing Cytotoxicity and Oxidant Antioxidant Status Modifications. FoodSci: Indian J Res Food Sci Nutr. 2016; 3(2):44. https://doi.org/10.15613/fijrfn/2016/v3i2/139485
49.Nogueira AO, Oliveira YIS, Adjafre BL, de Moraes MEA, Aragão GF. Pharmacological Effects of the Isomeric Mixture of Alpha and Beta Amyrin from Protium Heptaphyllum: A Literature Review. Fundam Clin Pharmacol. 2019; 33(1):4-12. https://doi:10.1111/fcp.12402
50.Mir MA, Manhas FM, Andrews K, Hasnain SM, Iqbal A, Sehar S, Younis A. Molecular Dynamic, Hirshfeld Surface, Molecular Docking and Drug Likeness Studies of a Potent Antioxidant, Anti-Malaria and Anti-Inflammatory Medicine: Pyrogallol. Results Chem. 2023; 5:100763. https://doi.org/10.1016/j.rechem.2023.100763
51.Shouhani P, Bahramikia S, Hejazi SH. Experimental and Theoretical Studies on the Anti-Amyloidogenic and Destabilizing Effects of Pyrogallol Against Human Insulin Protein. Preprints. 2022:2022020012. https://doi.org/10.20944/preprints202202.0012.v1
52.Mitsuhashi S, Saito A, Nakajima N, Shima H, Ubukata M. Pyrogallol Structure in Polyphenols is Involved in Apoptosis-induction on HEK293T and K562 Cells. Molecules. 2008; 13(12):2998-3006. https://doi.org/10.3390/molecules13122998
53.Revathi S, Hakkim FL, Kumar NR, Bakshi HA, Rashan L, Al-Buloshi M, Hasson SSAA, Krishnan M, Javid F, Nagarajan K. Induction of HT-29 Colon Cancer Cells Apoptosis by Pyrogallol With Growth Inhibiting Efficacy Against Drug-Resistant Helicobacter pylori. Anticancer Agents Med Chem. 2018; 18(13):1875-1884. https://doi:10.2174/1871520618666180806104902
54.Honda S and Masuda T. Identification of Pyrogallol in the Ethyl Acetate-Soluble Part of Coffee as the Main Contributor to Its Xanthine Oxidase Inhibitory Activity. J Agric Food Chem. 2016; 64(41):7743-7749. https://doi:10.1021/acs.jafc.6b03339
55.Kong F, Lee BH, Wei K. 5-Hydroxymethylfurfural Mitigates Lipopolysaccharide-Stimulated Inflammation Via Suppression of MAPK, NF-κB and mTOR Activation in RAW 264.7 Cells. Molecules. 2019; 24(2):275. https://doi:10.3390/molecules24020275
56.Ya BL, Li HF, Wang HY. 5-HMF Attenuates Striatum Oxidative Damage Via Nrf2/ARE Signaling Pathway
Following Transient Global Cerebral Ischemia. Cell Stress Chaperones. 2017; 22(1):55-65. https://doi.org/10.1007/s12192-016-0742-0
57.Boulebd H, Mechler A, Hoa N, Vo QV. Thermodynamic and Kinetic Studies of the Antiradical Activity of 5‐Hydroxymethylfurfural: Computational Insights. New J Chem. 2020; 44(11):4523-4532. https://doi.org/10.1039/D0NJ01567A
58.AlAni RA, Adhab MA, Hamad SAH. Evaluation the Efficiency of Different Techniques for Extraction and Purification of Tomato Yellow Leaf Curl Virus (TYLCV). Baghdad Sci J. 2011; 8(1):447-452. https://doi.org/10.21123/bsj.2011.8.1.447-452
59.Rozirwan N, Nugroho RY, Diansyah G, Muhtadi, Fauziah, Putri WAE, Agussalim A. Phytochemical Composition, Total Phenolic Content and Antioxidant Activity of Anadara granosa (Linnaeus, 1758) Collected from the East Coast of South Sumatra, Indonesia. Baghdad Sci J. 2023; 20(4):1258. https://doi.org/10.21123/bsj.2023.6941
60.Aini FN and Susilo S. Phytochemical Profiling of Javanese Ginseng (Talinum paniculatum) Stem Extract Using GC-MS Analysis and Pharmacological Potential. Trop J Nat Prod Res. 2023; 7(7):3272-3278. http://www.doi.org/10.26538/tjnpr/v7i7.1
61.Ariati PEP, Wirawan IGP, Sasadara MMV, Jawi IM, Sunyamurthi IGNA, Wijaya IN. Phytochemical Profiling of Balinese Alkaloid-Source Plant Purnajiwa (Kopsia arborea Blume. and Euchresta horsfieldii (Lesch.) Benn.). Trop J Nat Prod Res. 2024; 8(4):7089-7095. https://doi.org/10.26538/tjnpr/v8i5.5
62.Tang W and Row KH. Design and Evaluation of Polarity Controlled and Recyclable Deep Eutectic Solvent Based Biphasic System for the Polarity Driven Extraction and Separation of Compounds. J Clean Prod. 2020; 268:122306. https://doi.org/10.1016/j.jclepro.2020.122306
63.Ventura SPM, E Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chem Rev. 2017; 117(10):6984-7052. https://doi:10.1021/acs.chemrev.6b00550
64.Novaes FJM, de Faria DC, Ferraz FZ, de Aquino Neto FR. Hansen Solubility Parameters Applied to the Extraction of Phytochemicals. Plants (Basel). 2023; 12(16):3008. https://doi:10.3390/plants12163008