In Vivo Efficacy and In Silico Larvicidal Prediction of Essential Oils and Aromatic Extracts from Cinnamomum verum Against Culex pipiens Larvae (Diptera: Culicidae)

Main Article Content

Fouad El-Akhal
Sanae Lairini
Mohamed Chebaibi
Fatima Radi
Aziz Drioiche
Benboubker Moussa
Hajar El Omari
Karima El-Mouhdi
Samia Boussaa
Abdelhakim El Ouali Lalami

Abstract

Mosquitoes, particularly Culex pipiens, transmit vector-borne diseases that pose significant global health risks. Traditional chemical control methods face challenges such as environmental impact and resistance. This study investigated the in vivo larvicidal activity of essential oils (EOs) and aromatic extracts from Cinnamomum verum against Culex pipiens larvae. It also explored the in silico potential of acetylcholinesterase and chitin synthase 2 as molecular targets for effective control. Hydro-ethanolic and ethanolic extracts, as well as EOs, were prepared from C. verum. Chemical characterization was conducted using gas chromatography-mass spectrometry (GC-MS). Bioassays were carried out to establish the lethal concentrations of the extracts on C. pipiens larvae. Larvicidal efficacy was assessed with mortality rates calculated using Abbott's formula. Acetylcholinesterase and chitin synthase 2 crystal structures were sourced from the Protein Data Bank and used for docking studies. The hydro-ethanolic and ethanolic extracts yielded 10.20% and 9.16%, respectively. Most molecules in C. verum exhibited inhibitory effects ranging from -3.991 to -6.276 kcal/mol at the acetylcholinesterase receptor and -2.935 to -5.665 kcal/mol at the chitin synthase 2 receptor. In silico results identified alpha-humulene, 2-propenal, 3-(4-methoxyphenyl)-, and acetic acid cinnamyl ester as key inhibitors of acetylcholinesterase (g-scores: -6.276 to -6.099 kcal/mol). At the chitin synthase 2 receptor, acetic acid cinnamyl ester and 3-allyl-6-methoxyphenol showed strong inhibition (g-scores: -5.665 to -4.866 kcal/mol), highlighting their eco-friendly insecticidal potential. The findings of this study showed that Cinnamomum verum EOs and extracts demonstrated effective larvicidal properties, with promising in silico results supporting their potential as eco-friendly alternatives to chemical insecticides.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biographies

Fouad El-Akhal, Higher Institute of Nursing Professions and Health Techniques of Fez, Regional Health Directorate, EL Ghassani Hospital, Fez, 30000, Morocco 

Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Post Office Box 2427, Fez, Morocco 

Abdelhakim El Ouali Lalami, Higher Institute of Nursing Professions and Health Techniques of Fez, Regional Health Directorate, EL Ghassani Hospital, Fez, 30000, Morocco 

Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Post Office Box 2427, Fez, Morocco 

How to Cite

El-Akhal, F., Lairini, S., Chebaibi, M., Radi, F., Drioiche, A., Moussa, B., El Omari, H., El-Mouhdi, K., Boussaa, S., & Lalami, A. E. O. L. (2025). In Vivo Efficacy and In Silico Larvicidal Prediction of Essential Oils and Aromatic Extracts from Cinnamomum verum Against Culex pipiens Larvae (Diptera: Culicidae). Tropical Journal of Natural Product Research (TJNPR), 9(6), 2728-2736. https://doi.org/10.26538/tjnpr/v9i6.50

References

1.Weaver SC, Charlier C, Vasilakis N, Lecuit M. Zika, Chikungunya, and Other Emerging Vector-Borne Viral Diseases. Ann Rev Med. 2017; 69: 395–408.

2.Madhav M, Blasdell KR, Trewin B, Paradkar PN, López-Denman AJ. Culex-transmitted diseases: Mechanisms, impact, and future control strategies using wolbachia. Viruses. 2024; 16(7):1134. doi: 10.3390/v16071134.

3.Moser SK, Barnard M, Frantz RM, Spencer JA, Rodarte KA, Crooker IK, Bartlow AW, Romero-Severson E, Manore CA. Scoping review of Culex mosquito life history trait heterogeneity in response to temperature. Parasit Vectors. 2023; 16:200 https://doi.org/10.1186/s13071-023-05792-3.

4.Alami A, El Ouali Lalami A, Annemer S, El- Akhal F, Ez- zoubi A, El Hallabi M, Ez zoubi Y, Farah A. Larvicidal activity of six Moroccan Artemisia essential oils and a correlation study of their major components against Culex pipiens. J Appl Entomol. 2024; 00, 1–17. https://doi.org/10.1111/jen.13313.

5.Mouatassem Filali T, Faraj C, Guemmouh R, Fadil M, Rais N, El Asmi H, El-Akhal F, El Fattouhi Y, Darkaoui N, Baghouz A, El Ouali Lalami A.. Biotypology of Culicidian Species in the Region of Fez, Central Morocco Using the Statistical Analytical Methods. Trop J Nat Prod Res. 2024; 8(5):7172-7180. https://doi.org/10.26538/tjnpr/v8i5.19.

6.Murgue B, Murri S, Triki H, Deubel V, Zeller HG. West Nile in the Mediterraneam basin: 1950-2000. Ann N V Acad Sci. 2001; 951:117-126.

7.Schuffenecker I, Peyrefitte CN, Harrak MEL, Murri S, Lebond A, Zeller HG, West Nile virus in Morocco, 2003. Emer Infect Dis. 2005; 11(2):306-309.

8.Gupta M, Gupta D. Essential oils: As potential larvicides. J Drug Deliv Ther. 2022; 12(3):193-201 DOI: http://dx.doi.org/10.22270/jddt.v12i3.5313.

9.Taktak NEM, Badawy MEI, Awad OM, El-Ela NEA. Comparative toxicity of cinnamon oil, cinnamaldehyde and their nanoemulsions against Culex pipiens (L.) larvae with biochemical and docking studies. International Journal of Plant Based Pharmaceut. 2022; 2(1): 51-63.

10.Wilson AL, Courtenay O, Kelly-Hope LA, Scott TW, Takken W, Torr SJ, Lindsay SW. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis. 2020; 14(1): e0007831. doi: 10.1371/journal.pntd.0007831.

11.EL Akhal F, Maniar S, El Bachir A, Chafiqa F, Badoc A, El Ouali Lalami A. Resistance of Culex pipiens (Diptera: Culicidae) to Organophosphate Insecticides in Central Morocco. Int J Toxicol Pharmacol Res. 2016; 8(4):263-268.

12.Faraj C, El Kohli M, El Rhazi M, Laqraa M, Lyagoubi M. Niveau actuel de la résistance du moustique Culex pipiens aux insecticides au Maroc. Sc Lett. 2002; 4(1):4.

13.Meier CJ, Rouhier MF, Hillyer JF. Chemical Control of Mosquitoes and the Pesticide Treadmill: A Case for Photosensitive Insecticides as Larvicides. Insects. 2022; 13(12):1093. https://doi.org/10.3390/insects13121093.

14.Siddiqui JA, Fan R, Naz H, Bamisile BS, Hafeez M, Ghani MI, Wei Y, Xu Y, Chen X. Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. Front Physiol. 2023; 13:1112278. doi: 10.3389/fphys.2022.1112278.

15.El Ouali Lalami A, El-Akhal F, El Amri N, Maniar S, Faraj C. State resistance of the mosquito Culex pipiens towards temephos central Morocco. Bull Soc Pathol Exot, 2014; 107(3):194–198. https://doi.org/10.1007/s13149-014-0361-x.

16.Souto AL, Sylvestre M, Tölke ED, Tavares JF, Barbosa-Filho JM, Cebrián-Torrejón G. Plant-Derived Pesticides as an Alternative to Pest Management and Sustainable Agricultural Production: Prospects, Applications and Challenges. Molecules. 2021; 26(16):4835.

17.Şengül Demirak MŞ, Canpolat E. Plant-Based Bioinsecticides for Mosquito Control: Impact on Insecticide Resistance and Disease Transmission. Insects. 2022; 13(2):162. doi: 10.3390/insects13020162.

18.El Ouali Lalami A, EL-Akhal F, Maniar S, Ez zoubi Y, Taghzouti K. Chemical Constituents and Larvicidal Activity of Essential Oil of Lavandula stoechas (Lamiaceae) From Morocco Against the Malaria Vector Anopheles Labranchiae (Diptera: Culicidae). Int J Pharmacognosy and Phytochem Res. 2016; 8(3):505-511.

19.El-Akhal F, EL Ouali lalami A, EZ Zoubi Y, Greche H, Guemmouh R. Chemical composition and larvicidal activity of Culex pipiens (Diptera: Culicidae) of essential oil of Origanum majorana (Lamiaceae) cultivated in Morocco. Asian Pac J Trop Biomed. 2014a; 4(1):930-935.

20.EL-Akhal F, Guemmouh R, Greche H, El Ouali Lalami A. Valorization as bio-insecticide of essential oils of Citrus sinensis and Citrus aurantium cultivated in center of Morocco). J Mater Environ Sci. 2014b; 5(S1): 2319-2324.

21.El-Akhal F, Ramzi A, Farah A, Ez Zoubi Y, Benboubker M, Taghzouti K, El Ouali Lalami A. Chemical Composition and Larvicidal Activity of Lavandula angustifolia Subsp. angustifolia and Lavandula dentata Spp. dentata Essential Oils against Culex pipiens Larvae, Vector of West Nile Virus. Psyche: A Journal of Entomology. 2021; Volume 2021, Article ID 8872139, 7 pages https://doi.org/10.1155/2021/8872139.

22.El-akhal F, Alami A, Chahmi N, Mouatassem Filali T, El Fattouhi Y, Benboubker M, Amaiach R, Benrezzouk R, Taghzouti K, Talbi FZ, El Ouali Lalami A. Phytochemical Screening, Chemical Composition and Larvicidal Efficacy of Syzygium aromaticum Extracts and Essential Oil against Culex pipiens. Trop J Nat Prod Res. 2024; 8(1):5962-5967. http://www.doi.org/10.26538/tjnpr/v8i1.35.

23.Nakasen K, Wongsrila A, Prathumtet J, Sriraj P, Boonmars T, Promsrisuk T, Laikaew N, Aukkanimart R. Bio efficacy of Cinnamaldehyde from Cinnamomum verum essential oil against Culex quinquefasciatus (Diptera: Culicidae). J Entomol Acarol Res. 2021; 53(1): https://doi.org/10.4081/jear.2021.9400.

24.Khater HF, Shalaby AAS. Potential of biologically active plant oils for controlling of Culex pipiens (Diptera: Culicidae). Acta Sci Vet. 2018; 35(2): 153–160. https://doi.org/10.22456/1679-9216.15961.

25.Predrag L, Hui S, Uri C, Hassan A, Arieh B. The effects of aqueous extracts prepared from the leaves of Pistacia lentiscus in experimental liver disease. J Ethnopharmacol. 2005; 100(1-2): 198-204.

26.Himmi O, Dakki M, Trari B, El Agbani MA. The culicidae of Morocco: identification keys with biological and ecological data (work of the Scientific Institute), Rabat: Rabat Institute Scientific. 1995; 44: 1-51.

27.Brunhes J, Rhaim A, Geoffroy B, Hervy JP. Mosquitoes of the Mediterranean Africa: software identification and education, Paris (FRA); Tunis: IRD; IPT, 2000, 1 CD-ROM (Didactiques). ISBN2-7099-1446-8, (2000).

28.Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925; 18(2): 265-267.

29.Venugopala KN, Ramachandra P, Tratrat C, Gleiser RM, Bhandary S, Chopra D, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Venugopala R, Deb PK, Chandrashekharappa S, Khalil HE, Alwassil OI, Abed SN, Bataineh YA, Palenge R, Haroun M, Pottathil S, Girish MB, Akrawi SH, Mohanlall, V. Larvicidal activities of 2-aryl-2, 3-dihydroquinazolin-4-ones against malaria vector anopheles arabiensis, in silico ADMET prediction and molecular target investigation. Molecules. 2020; 25(6): 1316.

30.Abd El- Aziz FEZA, Hifney AF, Mohany M, Al-Rejaie SS, Banach A, Sayed AM. Insecticidal activity of brown seaweed (Sargassum latifolium) extract as potential chitin synthase inhibitors: Toxicokinetic and molecular docking approaches. S Afr J Bot. 2023; 160: 645-656.

31.El Abdali Y, Mahraz AM, Beniaich G, Mssillou I, Chebaibi M, Bin Jardan YA, Lahkimi A, Nafidi H, Aboul-Soud M AM, Bourhia M, Bouia, Abdelhak BA. Essential oils of Origanum compactum Benth: Chemical characterization, in vitro, in silico, antioxidant, and antibacterial activities. Open Chem. 2023; 21(1): 20220282. https://doi.org/10.1515/chem-2022-0282.

32.Amrati FEZ, Elmadbouh OHM, Chebaibi M, Soufi B, Conte R, Slighoua M, Saleh A, Al Kamaly O, Drioiche A, Zair T, Edderkaoui M, Bousta D. (2023). Evaluation of the toxicity of Caralluma europaea (CE) extracts and their effects on apoptosis and chemoresistance in pancreatic cancer cells. J Biomol Struct Dyn. 2023; 41(17): 8517-8534.

33.Giner M, Vassal JM, Vassal C, Chiroleu F, Kouaik Z. WinDL Software version 2.0, CIRAD-CA. URBI/MABIS, Montpellier, France, 1999.

34.Mahmood H, Ali Q, Hafeez M, Malik A . Antioxidant activity of Syzygium aromatium and Cinnamomum verum seed extracts. Biol Clin Sci Res J. 2021; 2021(e015):1-5. https://doi.org/10.54112/bcsrj.v2021i1.63.

35.SergioAndrade-Ochoa S, Sánchez-Aldana D, Chacón-Vargas KF, Rivera-Chavira BE, Sánchez-Torres LE, Camacho AD, Nogueda-Torres B, Nevárez-Moorillón GV. Oviposition Deterrent and Larvicidal and Pupaecidal Activity of Seven Essential Oils and their Major Components against Culex quinquefasciatus Say (Diptera: Culicidae): Synergism-antagonism Effects. Insects. 2018; 9(1):25. doi: 10.3390/insects9010025.

36.Y u T, Yao H, Qi S, Wang J. GC-MS analysis of volatiles in cinnamon essential oil extracted by different methods. Grasas y Aceites. 2020; 71(3): 372.

37.Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N. Cinnamon oil nano emulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J Nanosci Nanotechnol. 2013; 13(1): 114-122.

38.Gursale V, Dighe G, Parekh. Simultaneous quantitative determination of cinnamaldehyde and methyl eugenol from stem bark of Cinnamomum zeylanicum Blume using RP-HPLC. J Chromat Sci. 2010; 48(1):59–62.

39.Ainane T, Khammour F, Merghoub N, Elabboubi M, Charaf S, Ayoub Ainane A, Elkouali M, TalbiM, El Abba H, S Cherroud S. Cosmetic bio-product based on cinnamon essential oil Cinnamomum verum for the treatment of mycoses: preparation, chemical analysis and antimicrobial activity. MOJ Toxicol. 2019; 5(1):5-8. DOI: 10.15406/mojt.2019.05.00144.

40.Batiha GE, Beshbishy AM, Guswanto A, Nugraha A, Munkhjargal T, M Abdel-Daim M, Mosqueda J, Igarashi I. Phytochemical Characterization and Chemotherapeutic Potential of Cinnamomum verum Extracts on the Multiplication of Protozoan Parasites In Vitro and In Vivo. Molecules. 2020; 25(4):996. doi: 10.3390/molecules25040996. PMID: 32102270; PMCID: PMC7070835.

41.Kallel I, Hadrich B, Gargouri B, Chaabane A, Lassoued S, Gdoura R, Bayoudh A, Ben Messaoud E. Optimization of Cinnamon (Cinnamomum zeylanicum Blume) Essential Oil Extraction: Evaluation of Antioxidant and Antiproliferative Effects. Evid Based Complement Alternat Med. 2019; 2019, 1-11, Article ID 6498347 | https://doi.org/10.1155/2019/6498347.

42.Liang Y, Li Y, Sun A, Liu X. Chemical compound identification and antibacterial activity evaluation of cinnamon extracts obtained by subcritical n-butane and ethanol extraction. Food Sci Nutr. 2019; 7(6):2186-2193. doi: 10.1002/fsn3.1065. PMID: 31289667; PMCID: PMC6593476.

43.Yang YC, Lee HS, Lee SH, Clark JM, Ahn YJ. Ovicidal and adulticidal activities of Cinnamomum zeylanicum bark essential oil compounds and related compounds against Pediculus humanus capitis (Anoplura: Pediculicidae). Int J Parasitol. 2005; 35(14):1595-1600. doi: 10.1016/j.ijpara.2005.08.005.

44.Dias CN, Moraes DFC. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides. Parasitol Res. 2014; 113(2): 565-592.

45.Kharoubi R, Rehimi N, Khaldi R, Haouari-Abderrahim J, Soltani N. Phytochemical Screening and Insecticidal Activities of Essential oil of Mentha x piperita L.(Lamiales: Lamiaceae) and their Enzymatic Properties against Mosquito Culex pipiens L.(Diptera: Culicidae). J Essent Oil-Bear Plants. 2021; 24(1):134 -146.

46.Rao P, Goswami D, Rawal RM. Revealing the molecular interplay of curcumin as Culex pipiens Acetylcholine esterase 1 (AChE1) inhibitor. Sci Rep. 2021; 11(1): 1-18.

47.Koua KH, Han SH. Evaluation of the larvicide effect of an aqueous extract of Persea americana (Miller, 1768), Lauraceae, on Anopheles gambine (Giles, 1902), Diptera Culicidae. Invertebr. Reprod. Dev. 1998; 34(1):97–100. https://doi.org/10.1080/07924259.1998.9652358.

48.Vivekanandhan P, Venkatesan R, Ramkumar G, Karthi S, Senthil-Nathan S, Shivakumar MS. Comparative Analysis of Major Mosquito Vectors Response to Seed-Derived Essential Oil and Seed Pod-Derived Extract from Acacia

nilotica. Int J Environ Res Public Health. 2018; 15(2):388. doi: 10.3390/ijerph15020388.

49.Shangyuan W, Qinhong J, Zhilin X, Zhirong S, Qing M, Chunyang H, Fan S, Meizhen Y, Jie S, Hu L, Shuo Y.Perfect cooperative pest control via nano-pesticide and natural predator: High predation selectivity and negligible toxicity toward predatory stinkbug. Chemosphere. 2024 ; 355 ;141784, https://doi.org/10.1016/j.chemosphere.2024.141784.

50.Martínez-Cisterna D, Rubilar O, Tortella G, Chen L, Chacón-Fuentes M, Lizama M, Parra P, Bardehle L. Silver Nanoparticles as a Potent Nanopesticide: Toxic Effects and Action Mechanisms on Pest Insects of Agricultural Importance—A Review. Molecules. 2024; 29(23):5520. https://doi.org/10.3390/molecules29235520.

51.Côa F, Bortolozzo LS, Petry R, Da Silva GH, Martins CHZ, de Medeiros AMZ, Sabino CMS, Costa RS, Khan LU, Delite FS. Environmental toxicity of nanopesticides against non-target organisms: the state of the art. Nanopesticides. 2020; 227-279.

52. Seethalakshmi S, Habeeb Shaik M, Chandrasekar R, Saharuddin BM. Potential Acetylcholinesterase Inhibitor Acting on the Pesticide Resistant and Susceptible Cotton Pests. ACS Omega. 2022; 7 (24), 20515-20527 : DOI: 10.1021/acsomega.1c07359.

53.Sun R, Liu C, Zhang H, Wang Q. Benzoylurea chitin synthesis inhibitors. J Agric Food Chem. 2015; 63(31):6847–6865.

54.Gitau WJ. Evaluation of the composition, physico-chemical characteristics, surfactant and anti-microbial potential of Commiphora abyssinica gum resin. Doctoral dissertation, University of Nairobi; 2015. 160p.