Optimization of Cellulose Isolation from Nypa Fruticans Fronds Assisted by Hydrolysis and Re-bleaching
Main Article Content
Abstract
Converting Nypa fruticans fronds (NFF) into valuable microcrystalline cellulose (MCC) is a sustainable solution with many benefits. This study aimed to isolate microcrystalline cellulose from NFF by a sequential process from alkalization with varying concentrations of NaOH, first bleaching with 10% wt H2O2, hydrolysis with acid, and re-bleaching with NaOCl. The treatment results were evaluated based on percent yield and cellulose content, physicochemical properties, functional group analysis, crystallinity index, and surface morphology. The optimal NaOH concentration parameter was obtained at 10% wt NaOH with 57.10% cellulose, 10.73% hemicellulose, and 8.87% lignin. After the first bleaching, hydrolysis, and re-bleaching processes, the cellulose content increased sequentially from 62.13% to 71.26%, while hemicellulose decreased from 8.76% to 7.56%, and lignin decreased from 7.33% to 4.23%. Sequential treatments also caused a decrease in the swelling index from 1.441% to 1.224% and water binding capacity from 4.30% to 2.29%, indicating a decrease in hydrophilicity. XRD analysis showed that hydrolysis and re-bleaching treatments increased the crystallinity index of cellulose to 72.49%, which is close to the crystallinity of commercial cellulose (C-MCC) of 79.63%. SEM analysis showed that the surface morphology of cellulose was rod-like with a heterogeneous size. FTIR analysis revealed changes in the functional groups of NFF after sequential treatment from alkalization to re-bleaching, indicating the reduction of lignin and hemicellulose. The characterization results showed that the hydrolysis and re-bleaching assisted isolation process was sufficient to produce microcrystalline cellulose from Nypa fruticans fronds for various applications.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1.Tamunaidu P, Saka S. Chemical characterization of various parts of nipa palm (Nypa fruticans). Ind Crops Prod. 2011;34(3):1423–1428.
2.Evelyn, Sunarno, Andrio D, Aman A, Ohi H. Nypa fruticans Frond Waste for Pure Cellulose Utilizing Sulphur-Free and Totally Chlorine-Free Processes. Molecules. 2022; 27(17): 236-247.
3.Díez D, Urueña A, Piñero R, Barrio A, Tamminen T. Determination of hemicellulose, cellulose, and lignin content in different types of biomasses by thermogravimetric analysis and pseudocomponent kinetic model (TGA-PKM Method). Processes. 2020; 8(9). 178-183.
4.Salem DMSA, Ismail MM. Characterization of cellulose and cellulose nanofibers isolated from various seaweed species. Egypt J Aquat Res. 2022; 48(4): 307–313.
5.Fitrya F, Fithri NA, Dina PW. Optimization of Acid Concentration and Hydrolysis Time in the Isolation of Microcrystalline Cellulose from Water Hyacinth (Eichornia crassipes Solm). Trop. J. Nat. Prod. Res. 2021;5(3):503–508.
6.Henny SW, Sri Y, Giovani W. Synthesis of Sodium Carboxymethyl Cellulose-Based Hydrogel from Durian (Durio zibethinus) Rind Using Aluminium Sulphate as Crosslinking Agent. Trop. J. Nat. Prod. Res. 2021; 5(5): 873–876.
7.Holilah H, Suryanegara L, Bahruji H, Hamid SAA, Wahyudi MS, Masruchin N, Asranuddin A, Faradilla R, Syafri E, Melenia A, Jovita S, Nugraha S, Prasetyoko D. Reusability of lactic acid on hydrolysis of nanocrystalline cellulose from pepper waste (Piper nigrum L.). Case Stud. Chem. Environ. Eng. 2024; 10: 100922. Doi: 10.1016/j.cscee.2024.100922
8.Wardani RK, Holilah H, Bahruji H, Abdul HS, Suprapto S, Jalil A, Nugraha R, Prasetyoko D. The comparison of hydrothermal, ultrasonication and microwave-assisted alkalization of cellulose from Borassus flabellifer fruit husk. Sustain Chem Pharm. 2024; 39: 101583. Doi: 10.1016/J.SCP.2024.101583.
9.Randis R, Darmadi DB, Gapsari F, Sonief AAA. Isolation and characterization of microcrystalline cellulose from oil palm fronds biomass using consecutive chemical treatments. Case Stud. Chem. Environ. Eng. 2024; 9: 100616. Doi: 10.1016/j.cscee.2024.100616.
10.Zendrato HM, Masruchin N, Nikmatin S, Wistara NJ. Effective cellulose isolation from torch ginger stem by alkaline hydrogen peroxide–peracetic acid system. J. Ind. Eng. Chem. 2024; 131: 376–387.
11.Raza M, Mustafa J, Al-Marzouqi AH, Abu-Jdayil B. Isolation and characterization of cellulose from date palm waste using rejected brine solution. Int. J. Thermofluids. 2024; 21: 100548. Doi: 10.1016/J.IJFT.2023.100548.
12.Freitas PAV, Santana LG, González-Martínez C, Chiralt A. Combining subcritical water extraction and bleaching with hydrogen peroxide to obtain cellulose fibres from rice straw. Carbohydr Polym Technol Appl. 2024; 7:100345. Doi: 10.1016/j.carpta.2024.100491.
13.Holilah H, Prasetyoko D, Ediati R, Bahruji H, Jalil A, Asranudin A, Anggraini S. Hydrothermal assisted isolation of microcrystalline cellulose from pepper (Piper nigrum L.) processing waste for making sustainable bio-composite. J Clean Prod. 2021;305: 127229. Doi: 10.1016/j.jclepro.2021.127229.
14.Ramadhani DV, Holilah H, Bahruji H, Jadid N, Oetami T, Jalil A, Asranudin A, Ediati R, Masruchin N, Suryanegara L, Prasetyoko D. Effect of lignocellulosic composition of Reutealis trisperma waste on nanocrystalline cellulose properties. Biocatal Agric Biotechnol. 2022; 45: 102516. Doi: 10.1016/j.bcab.2022.102516.
15.Nur Alam M, Raya I, Ahmad A, Taba P, Putri SE, Irfandi R, Salnus S, Agussalim A. Analysis of Lignocellulosic in Various Parts of Nipa Palm (Nypa fruticans) Biomass from the Rammang-Rammang Maros Rivers. Malaysian. J. Chem. 2024; 26(5): 154-164.
16.Dungani R, Bakshi MI, Hanifa TZ, Dewi M, Syamani F, Mahardika M, Fatriasari M. Isolation and Characterization of Cellulose Nanofiber (CNF) from Kenaf (Hibiscus cannabinus) Bast through the Chemo-Mechanical Process. J Renew Mater. 2024;12(6): 1057–1069.
17.Collazo-Bigliardi S, Ortega-Toro R, Chiralt Boix A. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydr Polym. 2018;191: 205-215.
18.Shahril SM, Ridzuan MJM, Majid MSA, Bariah AMN, Rahman MTA, Narayanasamy P. Alkali treatment influence on cellulosic fiber from Furcraea foetida leaves as potential reinforcement of polymeric composites. J. Mater. Res. Technol. 2022; 19: 2567–2583.
19.Mittal A, Katahira R, Donohoe BS. Alkaline Peroxide Delignification of Corn Stover. ACS Sustain Chem Eng. 2017; 5(7): 6310–6321.
20.Trache D, Hussin MH, Hui Chuin CT, Sabar S, Fasita M, Taiwo O, Hassan T, Haafiz, M. Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int J Biol Macromol. 2016; 93. Doi: 10.1016/j.ijbiomac.2016.09.056.
21.Kunusa WR, Isa I, Laliyo LAR, Iyabu H. FTIR, XRD and SEM Analysis of Microcrystalline Cellulose (MCC) Fibers from Corncorbs in Alkaline Treatment. J. Phys.: Conf. Ser. 2018; 1028: 012199. Doi: 10.1088/1742-6596/1028/1/012199.
22.Salem DMSA, Ismail MM. Characterization of cellulose and cellulose nanofibers isolated from various seaweed species. Egypt J Aquat Res. 2022; 48(4): 307–313.
23.Rusdin A, Ahyar A, Karim A, Kasim S, Wahab A, Tahir D, Rohaeti E, Taba P, Awaluddin, Baharuddin M, Jarre S, Sulastri, Karim H. View of Comparison of Extraction Methods and Characterization of Cellulose from Sugarcane Bagasse (Saccharum officinarum L.) for Bioplastic Food Packaging. Trop. J. Nat. Prod. Res. 2024; 8(12): 9637–9642. Doi: 10.26538/tjnpr/v8i12.42.
24.Jiang F, Hsieh Y Lo. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 2015; 122: 60-68. Doi: 10.1016/j.carbpol.2014.12.064.
25.Pirozzi A, Ferrari G, Donsì F. Cellulose Isolation from Tomato Pomace Pretreated by High-Pressure Homogenization. Foods 2022;11(3): 1-17. Doi: 10.3390/foods11030266.
26.Holilah H, Suryanegara L, Bahruji H, Masruchin N, Suprapto S, Ediati R, Asranudin A, Jalil A, Ramadhani D, Hamid Z, Prasetyoko D. Nanocrystalline cellulose from lactic acid hydrolysis of pepper waste (Piper nigrum L.): Response surface methodology optimization and application in bio-composite. J. Mater. Res. Technol. 2023; 27: 6344-6357. Doi: 10.1016/j.jmrt.2023.11.084.
27.Rojas M, Ruano D, Orrego-Restrepo E, Chejne F. Non-isothermal kinetics of cellulose, hemicellulose, and lignin degradation during cocoa bean shell pyrolysis. Biomass Bioenergy. 2023; 177: 106932. Doi: 10.1016/J.BIOMBIOE.2023.106932.
28.Ma'ruf A, Pramudono B, Aryanti N. Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted. AIP Conf Proc. 2017;1823(1). 020013: 1-5. Doi: 10.1063/1.4978086.
29.Akinjokun AI, Petrik LF, Ogunfowokan AO, Ajao J, Ojumu TV. Isolation and characterization of nanocrystalline cellulose from cocoa pod husk (CPH) biomass wastes. Heliyon. 2021; 7(4): 1-7. Doi: 10.1016/j.heliyon.2021.e06680.
30.Nasution H, Yahya EB, Abdul KH, Shaah M, Suriani A, Mohamed A, Alfatah T,Abdullah C. Extraction and Isolation of Cellulose Nanofibers from Carpet Wastes Using Supercritical Carbon Dioxide Approach. Polymers (Basel). 2022;14(2): 1-14. Doi: 10.3390/polym14020326.
31.Rodsamran P, Sothornvit R. Renewable cellulose source: Isolation and characterisation of cellulose from rice stubble residues. Int J Food Sci Technol. 2015; 50(9): 2061–2068. Doi: 10.1111/ijfs.12862.
32.Soleimanzadeh H, Salari D, Olad A, Ostadrahimi A. Optimization of delignification and cellulose isolation process from Natural cotton pods and preparation of its nanofibers with choline chloride–lactic acid eutectic solvents. Biomass Convers. Biorefin. 2023; 15(2): 2063-2079. Doi: 10.1007/s13399-023-04141-9.
33.Sai Prasanna N, Mitra J. Isolation and characterization of cellulose nanocrystals from Cucumis sativus peels. Carbohydr Polym. 2020; 247: 116706. Doi: 10.1016/j.carbpol.2020.116706.
34.Liu Q, He WQ, Aguedo M, Xia X, Bai W, Dong Y, Song J, Richel A, Goffin D. Microwave-assisted alkali hydrolysis for cellulose isolation from wheat straw: Influence of reaction conditions and non-thermal effects of microwave. Carbohydr Polym. 2021; 253: 117170. Doi: 10.1016/j.carbpol.2020.117170.
35.Winuprasith T, Suphantharika M. Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocoll. 2013; 32(2): 383-394. Doi: 10.1016/j.foodhyd.2013.01.023.
36.Jiang M, Zhao M, Zhou Z, Huang T, Chen X, Wang Y. Isolation of cellulose with ionic liquid from steam exploded rice straw. Ind Crops Prod 2011;33(3). 734-738. Doi: 10.1016/j.indcrop.2011.01.015.
37.Homyuen A, Vanitjinda G, Yingkamhaeng N, Sukyai P. Microcrystalline Cellulose Isolation and Impregnation with Sappan Wood Extracts as Antioxidant Dietary Fiber for Bread Preparation. ACS Omega. 2023;8(34): 31100–31111. Doi: 10.1021/acsomega.3c03043.
38.Gupta V, Ramakanth D, Verma C, Maji PK, Gaikwad KK. Isolation and characterization of cellulose nanocrystals from amla (Phyllanthus emblica) pomace. Biomass Convers. Biorefin. 2023;13(17): 15451–15462. Doi: 10.1007/s13399-021-01852-9
39.Hernández MÁG, Marure AL, Velázquez MGN, Torres JAM, Galvan AA. Microcrystalline Cellulose Isolation – Proposed Mechanism: Enhanced Coupling. BioRes. 2023;18(1): 1788-1802. Doi: 10.15376/biores.18.1.1788-1802.
40.Zambrano-Mite LF, Villasana Y, Bejarano ML, et al. Optimization of microfibrillated cellulose isolation from cocoa pod husk via mild oxalic acid hydrolysis: A response surface methodology approach. Heliyon. 2023; 9(6): 1-11. Doi: 10.1016/j.heliyon.2023.e17161.
41.Holilah H, Bahruji H, Ediati R, Asranudin A, Jalil A, Piluharto B, Nugraha R, Prasetyoko D. Uniform rod and spherical nanocrystalline celluloses from hydrolysis of industrial pepper waste (Piper nigrum L.) using organic acid and inorganic acid. Int J Biol Macromol 2022; 204: 593-605. Doi: 10.1016/j.ijbiomac.2022.02.045.
42.Gao X, Chen KL, Zhang H, Peng LC, Liu QX. Isolation and characterization of cellulose obtained from bagasse pith by oxygen-containing agents. BioRes. 2014; 9(3): 4094-4107. Doi: 10.15376/biores.9.3.4094-4107.
43.Megashah LN, Ariffin H, Zakaria MR, Hassan MA. Multi-step pretreatment as an eco-efficient pretreatment method for the production of cellulose nanofiber from oil palm empty fruit bunch. AsPac J. Mol. Biol. Biotechnol. 2018; 26(2): 1-8. Doi: 10.35118/apjmbb.2018.026.2.01.
44.Muthukumar J, Chidambaram R. Isolation and Quantification of Cellulose from Various Food-Grade Macroalgal Species. Cellul. Chem. Technol. 2023; 57(3–4). 237-244. Doi: 10.35812/CelluloseChemTechnol.2023.57.23.
45.Squinca P, Bilatto S, Badino AC, Farinas CS. The use of enzymes to isolate cellulose nanomaterials: A systematic map review. Carbohydr. Polym. Technol. Appl. 2022; 3: 1-15. Doi: 10.1016/j.carpta.2022.100212.
46.Zhao H, Kwak JH, Conrad Zhang Z, Brown HM, Arey BW, Holladay JE. Studying cellulose fiber structure by SEM, XRD, NMR, and acid hydrolysis. Carbohydr Polym. 2007; 68(2): 235-241. Doi: 10.1016/j.carbpol.2006.12.013.
47.Hozman-Manrique AS, Garcia-Brand AJ, Hernández-Carrión M, Porras A. Isolation and Characterization of Cellulose Microfibers from Colombian Cocoa Pod Husk via Chemical Treatment with Pressure Effects. Polymers. 2023;15(3): 1-18. Doi: 10.3390/polym15030664.
48.Farooq Adil S, Bhat VS, Batoo KM, Imran A, Assal M, Madhusudhan B, Khan M, Al-Warthan A. Isolation and characterization of nanocrystalline cellulose from flaxseed Hull: A future onco-drug delivery agent. J. Saudi Chem. Soc. 2020; 24(4): 374-379. Doi: 10.1016/j.jscs.2020.03.002.
49.Sosiati H, Muhaimin M, Purwanto, Wijayanti DA, Triyana K. Nanocrystalline Cellulose Studied with a Conventional SEM. Proc. ICP 2014. 2014; 12-15. Doi: 10.2991/icp-14.2014.3.
50.Intan M, Cahyani, Endang L, Adhyatmika A, Teuku N, Sulaiman S. Preparation and Characterization of Microcrystalline Cellulose for Pharmaceutical Excipient: A Review. Trop. J. Nat. Prod. Res. 2022; 6(10): 1570–1575. Doi: 10.26538/tjnpr/v6i10.3.
51.Indah Y, Ningsih, Mochammad AH, Bambang K, Tristiana E. Effect of Coconut Water Storage Time and Inoculum Size of Lentilactobacillus parafarraginis on Dried Bacterial Cellulose Properties. Trop. J. Nat. Prod. Res. 2024; 8(2): 6191–6299. Doi: 10.26538/tjnpr/v8i2.29.